ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funbrfv2b Unicode version

Theorem funbrfv2b 5678
Description: Function value in terms of a binary relation. (Contributed by Mario Carneiro, 19-Mar-2014.)
Assertion
Ref Expression
funbrfv2b  |-  ( Fun 
F  ->  ( A F B  <->  ( A  e. 
dom  F  /\  ( F `  A )  =  B ) ) )

Proof of Theorem funbrfv2b
StepHypRef Expression
1 funrel 5335 . . . 4  |-  ( Fun 
F  ->  Rel  F )
2 releldm 4959 . . . . 5  |-  ( ( Rel  F  /\  A F B )  ->  A  e.  dom  F )
32ex 115 . . . 4  |-  ( Rel 
F  ->  ( A F B  ->  A  e. 
dom  F ) )
41, 3syl 14 . . 3  |-  ( Fun 
F  ->  ( A F B  ->  A  e. 
dom  F ) )
54pm4.71rd 394 . 2  |-  ( Fun 
F  ->  ( A F B  <->  ( A  e. 
dom  F  /\  A F B ) ) )
6 funbrfvb 5674 . . 3  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  =  B  <-> 
A F B ) )
76pm5.32da 452 . 2  |-  ( Fun 
F  ->  ( ( A  e.  dom  F  /\  ( F `  A )  =  B )  <->  ( A  e.  dom  F  /\  A F B ) ) )
85, 7bitr4d 191 1  |-  ( Fun 
F  ->  ( A F B  <->  ( A  e. 
dom  F  /\  ( F `  A )  =  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   class class class wbr 4083   dom cdm 4719   Rel wrel 4724   Fun wfun 5312   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326
This theorem is referenced by:  brtpos2  6397  xpcomco  6985
  Copyright terms: Public domain W3C validator