ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funbrfv2b Unicode version

Theorem funbrfv2b 5531
Description: Function value in terms of a binary relation. (Contributed by Mario Carneiro, 19-Mar-2014.)
Assertion
Ref Expression
funbrfv2b  |-  ( Fun 
F  ->  ( A F B  <->  ( A  e. 
dom  F  /\  ( F `  A )  =  B ) ) )

Proof of Theorem funbrfv2b
StepHypRef Expression
1 funrel 5205 . . . 4  |-  ( Fun 
F  ->  Rel  F )
2 releldm 4839 . . . . 5  |-  ( ( Rel  F  /\  A F B )  ->  A  e.  dom  F )
32ex 114 . . . 4  |-  ( Rel 
F  ->  ( A F B  ->  A  e. 
dom  F ) )
41, 3syl 14 . . 3  |-  ( Fun 
F  ->  ( A F B  ->  A  e. 
dom  F ) )
54pm4.71rd 392 . 2  |-  ( Fun 
F  ->  ( A F B  <->  ( A  e. 
dom  F  /\  A F B ) ) )
6 funbrfvb 5529 . . 3  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  =  B  <-> 
A F B ) )
76pm5.32da 448 . 2  |-  ( Fun 
F  ->  ( ( A  e.  dom  F  /\  ( F `  A )  =  B )  <->  ( A  e.  dom  F  /\  A F B ) ) )
85, 7bitr4d 190 1  |-  ( Fun 
F  ->  ( A F B  <->  ( A  e. 
dom  F  /\  ( F `  A )  =  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   class class class wbr 3982   dom cdm 4604   Rel wrel 4609   Fun wfun 5182   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by:  brtpos2  6219  xpcomco  6792
  Copyright terms: Public domain W3C validator