ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnopfvb Unicode version

Theorem fnopfvb 5528
Description: Equivalence of function value and ordered pair membership. (Contributed by NM, 7-Nov-1995.)
Assertion
Ref Expression
fnopfvb  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  C  <->  <. B ,  C >.  e.  F ) )

Proof of Theorem fnopfvb
StepHypRef Expression
1 fnbrfvb 5527 . 2  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  C  <-> 
B F C ) )
2 df-br 3983 . 2  |-  ( B F C  <->  <. B ,  C >.  e.  F )
31, 2bitrdi 195 1  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  C  <->  <. B ,  C >.  e.  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   <.cop 3579   class class class wbr 3982    Fn wfn 5183   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by:  funopfvb  5530  fvopab3g  5559  f1ofveu  5830  fnotovb  5885  ovid  5958  ov  5961  ovg  5980
  Copyright terms: Public domain W3C validator