| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fdmeu | GIF version | ||
| Description: There is exactly one codomain element for each element of the domain of a function. (Contributed by AV, 20-Apr-2025.) |
| Ref | Expression |
|---|---|
| fdmeu | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 (𝐹‘𝑋) = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feu 5481 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 〈𝑋, 𝑦〉 ∈ 𝐹) | |
| 2 | ffn 5446 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 2 | anim1i 340 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → (𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) |
| 4 | 3 | adantr 276 | . . . 4 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) |
| 5 | fnopfvb 5644 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑦 ↔ 〈𝑋, 𝑦〉 ∈ 𝐹)) | |
| 6 | 4, 5 | syl 14 | . . 3 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ((𝐹‘𝑋) = 𝑦 ↔ 〈𝑋, 𝑦〉 ∈ 𝐹)) |
| 7 | 6 | reubidva 2693 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → (∃!𝑦 ∈ 𝐵 (𝐹‘𝑋) = 𝑦 ↔ ∃!𝑦 ∈ 𝐵 〈𝑋, 𝑦〉 ∈ 𝐹)) |
| 8 | 1, 7 | mpbird 167 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 (𝐹‘𝑋) = 𝑦) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 ∃!wreu 2488 〈cop 3647 Fn wfn 5286 ⟶wf 5287 ‘cfv 5291 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4179 ax-pow 4235 ax-pr 4270 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-v 2779 df-sbc 3007 df-un 3179 df-in 3181 df-ss 3188 df-pw 3629 df-sn 3650 df-pr 3651 df-op 3653 df-uni 3866 df-br 4061 df-opab 4123 df-id 4359 df-xp 4700 df-rel 4701 df-cnv 4702 df-co 4703 df-dm 4704 df-rn 4705 df-iota 5252 df-fun 5293 df-fn 5294 df-f 5295 df-fv 5299 |
| This theorem is referenced by: uspgriedgedg 15934 |
| Copyright terms: Public domain | W3C validator |