| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffnfvf | GIF version | ||
| Description: A function maps to a class to which all values belong. This version of ffnfv 5720 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006.) |
| Ref | Expression |
|---|---|
| ffnfvf.1 | ⊢ Ⅎ𝑥𝐴 |
| ffnfvf.2 | ⊢ Ⅎ𝑥𝐵 |
| ffnfvf.3 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| ffnfvf | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffnfv 5720 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ∈ 𝐵)) | |
| 2 | nfcv 2339 | . . . 4 ⊢ Ⅎ𝑧𝐴 | |
| 3 | ffnfvf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | ffnfvf.3 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
| 5 | nfcv 2339 | . . . . . 6 ⊢ Ⅎ𝑥𝑧 | |
| 6 | 4, 5 | nffv 5568 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
| 7 | ffnfvf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 8 | 6, 7 | nfel 2348 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑧) ∈ 𝐵 |
| 9 | nfv 1542 | . . . 4 ⊢ Ⅎ𝑧(𝐹‘𝑥) ∈ 𝐵 | |
| 10 | fveq2 5558 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
| 11 | 10 | eleq1d 2265 | . . . 4 ⊢ (𝑧 = 𝑥 → ((𝐹‘𝑧) ∈ 𝐵 ↔ (𝐹‘𝑥) ∈ 𝐵)) |
| 12 | 2, 3, 8, 9, 11 | cbvralf 2721 | . . 3 ⊢ (∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
| 13 | 12 | anbi2i 457 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ∈ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| 14 | 1, 13 | bitri 184 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2167 Ⅎwnfc 2326 ∀wral 2475 Fn wfn 5253 ⟶wf 5254 ‘cfv 5258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 |
| This theorem is referenced by: ixpf 6779 cc4f 7336 |
| Copyright terms: Public domain | W3C validator |