ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffnfvf GIF version

Theorem ffnfvf 5677
Description: A function maps to a class to which all values belong. This version of ffnfv 5676 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006.)
Hypotheses
Ref Expression
ffnfvf.1 𝑥𝐴
ffnfvf.2 𝑥𝐵
ffnfvf.3 𝑥𝐹
Assertion
Ref Expression
ffnfvf (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))

Proof of Theorem ffnfvf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ffnfv 5676 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) ∈ 𝐵))
2 nfcv 2319 . . . 4 𝑧𝐴
3 ffnfvf.1 . . . 4 𝑥𝐴
4 ffnfvf.3 . . . . . 6 𝑥𝐹
5 nfcv 2319 . . . . . 6 𝑥𝑧
64, 5nffv 5527 . . . . 5 𝑥(𝐹𝑧)
7 ffnfvf.2 . . . . 5 𝑥𝐵
86, 7nfel 2328 . . . 4 𝑥(𝐹𝑧) ∈ 𝐵
9 nfv 1528 . . . 4 𝑧(𝐹𝑥) ∈ 𝐵
10 fveq2 5517 . . . . 5 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
1110eleq1d 2246 . . . 4 (𝑧 = 𝑥 → ((𝐹𝑧) ∈ 𝐵 ↔ (𝐹𝑥) ∈ 𝐵))
122, 3, 8, 9, 11cbvralf 2697 . . 3 (∀𝑧𝐴 (𝐹𝑧) ∈ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
1312anbi2i 457 . 2 ((𝐹 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) ∈ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
141, 13bitri 184 1 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2148  wnfc 2306  wral 2455   Fn wfn 5213  wf 5214  cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226
This theorem is referenced by:  ixpf  6722  cc4f  7270
  Copyright terms: Public domain W3C validator