ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffnfvf GIF version

Theorem ffnfvf 5644
Description: A function maps to a class to which all values belong. This version of ffnfv 5643 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006.)
Hypotheses
Ref Expression
ffnfvf.1 𝑥𝐴
ffnfvf.2 𝑥𝐵
ffnfvf.3 𝑥𝐹
Assertion
Ref Expression
ffnfvf (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))

Proof of Theorem ffnfvf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ffnfv 5643 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) ∈ 𝐵))
2 nfcv 2308 . . . 4 𝑧𝐴
3 ffnfvf.1 . . . 4 𝑥𝐴
4 ffnfvf.3 . . . . . 6 𝑥𝐹
5 nfcv 2308 . . . . . 6 𝑥𝑧
64, 5nffv 5496 . . . . 5 𝑥(𝐹𝑧)
7 ffnfvf.2 . . . . 5 𝑥𝐵
86, 7nfel 2317 . . . 4 𝑥(𝐹𝑧) ∈ 𝐵
9 nfv 1516 . . . 4 𝑧(𝐹𝑥) ∈ 𝐵
10 fveq2 5486 . . . . 5 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
1110eleq1d 2235 . . . 4 (𝑧 = 𝑥 → ((𝐹𝑧) ∈ 𝐵 ↔ (𝐹𝑥) ∈ 𝐵))
122, 3, 8, 9, 11cbvralf 2685 . . 3 (∀𝑧𝐴 (𝐹𝑧) ∈ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
1312anbi2i 453 . 2 ((𝐹 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) ∈ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
141, 13bitri 183 1 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wcel 2136  wnfc 2295  wral 2444   Fn wfn 5183  wf 5184  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196
This theorem is referenced by:  ixpf  6686  cc4f  7210
  Copyright terms: Public domain W3C validator