![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ffnfvf | GIF version |
Description: A function maps to a class to which all values belong. This version of ffnfv 5716 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006.) |
Ref | Expression |
---|---|
ffnfvf.1 | ⊢ Ⅎ𝑥𝐴 |
ffnfvf.2 | ⊢ Ⅎ𝑥𝐵 |
ffnfvf.3 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
ffnfvf | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffnfv 5716 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ∈ 𝐵)) | |
2 | nfcv 2336 | . . . 4 ⊢ Ⅎ𝑧𝐴 | |
3 | ffnfvf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | ffnfvf.3 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
5 | nfcv 2336 | . . . . . 6 ⊢ Ⅎ𝑥𝑧 | |
6 | 4, 5 | nffv 5564 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
7 | ffnfvf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
8 | 6, 7 | nfel 2345 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑧) ∈ 𝐵 |
9 | nfv 1539 | . . . 4 ⊢ Ⅎ𝑧(𝐹‘𝑥) ∈ 𝐵 | |
10 | fveq2 5554 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
11 | 10 | eleq1d 2262 | . . . 4 ⊢ (𝑧 = 𝑥 → ((𝐹‘𝑧) ∈ 𝐵 ↔ (𝐹‘𝑥) ∈ 𝐵)) |
12 | 2, 3, 8, 9, 11 | cbvralf 2718 | . . 3 ⊢ (∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
13 | 12 | anbi2i 457 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ∈ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
14 | 1, 13 | bitri 184 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2164 Ⅎwnfc 2323 ∀wral 2472 Fn wfn 5249 ⟶wf 5250 ‘cfv 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 |
This theorem is referenced by: ixpf 6774 cc4f 7329 |
Copyright terms: Public domain | W3C validator |