| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffnfvf | GIF version | ||
| Description: A function maps to a class to which all values belong. This version of ffnfv 5761 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006.) |
| Ref | Expression |
|---|---|
| ffnfvf.1 | ⊢ Ⅎ𝑥𝐴 |
| ffnfvf.2 | ⊢ Ⅎ𝑥𝐵 |
| ffnfvf.3 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| ffnfvf | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffnfv 5761 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ∈ 𝐵)) | |
| 2 | nfcv 2350 | . . . 4 ⊢ Ⅎ𝑧𝐴 | |
| 3 | ffnfvf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | ffnfvf.3 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
| 5 | nfcv 2350 | . . . . . 6 ⊢ Ⅎ𝑥𝑧 | |
| 6 | 4, 5 | nffv 5609 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
| 7 | ffnfvf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 8 | 6, 7 | nfel 2359 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑧) ∈ 𝐵 |
| 9 | nfv 1552 | . . . 4 ⊢ Ⅎ𝑧(𝐹‘𝑥) ∈ 𝐵 | |
| 10 | fveq2 5599 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
| 11 | 10 | eleq1d 2276 | . . . 4 ⊢ (𝑧 = 𝑥 → ((𝐹‘𝑧) ∈ 𝐵 ↔ (𝐹‘𝑥) ∈ 𝐵)) |
| 12 | 2, 3, 8, 9, 11 | cbvralf 2733 | . . 3 ⊢ (∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
| 13 | 12 | anbi2i 457 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ∈ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| 14 | 1, 13 | bitri 184 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2178 Ⅎwnfc 2337 ∀wral 2486 Fn wfn 5285 ⟶wf 5286 ‘cfv 5290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 |
| This theorem is referenced by: ixpf 6830 cc4f 7416 |
| Copyright terms: Public domain | W3C validator |