ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  finds1 Unicode version

Theorem finds1 4668
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 22-Mar-2006.)
Hypotheses
Ref Expression
finds1.1  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
finds1.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
finds1.3  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
finds1.4  |-  ps
finds1.5  |-  ( y  e.  om  ->  ( ch  ->  th ) )
Assertion
Ref Expression
finds1  |-  ( x  e.  om  ->  ph )
Distinct variable groups:    x, y    ps, x    ch, x    th, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)

Proof of Theorem finds1
StepHypRef Expression
1 eqid 2207 . 2  |-  (/)  =  (/)
2 finds1.1 . . 3  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
3 finds1.2 . . 3  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
4 finds1.3 . . 3  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
5 finds1.4 . . . 4  |-  ps
65a1i 9 . . 3  |-  ( (/)  =  (/)  ->  ps )
7 finds1.5 . . . 4  |-  ( y  e.  om  ->  ( ch  ->  th ) )
87a1d 22 . . 3  |-  ( y  e.  om  ->  ( (/)  =  (/)  ->  ( ch 
->  th ) ) )
92, 3, 4, 6, 8finds2 4667 . 2  |-  ( x  e.  om  ->  ( (/)  =  (/)  ->  ph )
)
101, 9mpi 15 1  |-  ( x  e.  om  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2178   (/)c0 3468   suc csuc 4430   omcom 4656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-uni 3865  df-int 3900  df-suc 4436  df-iom 4657
This theorem is referenced by:  findcard  7011  findcard2  7012  findcard2s  7013
  Copyright terms: Public domain W3C validator