| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > finds1 | GIF version | ||
| Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 22-Mar-2006.) |
| Ref | Expression |
|---|---|
| finds1.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
| finds1.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| finds1.3 | ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) |
| finds1.4 | ⊢ 𝜓 |
| finds1.5 | ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| finds1 | ⊢ (𝑥 ∈ ω → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . 2 ⊢ ∅ = ∅ | |
| 2 | finds1.1 | . . 3 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
| 3 | finds1.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 4 | finds1.3 | . . 3 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) | |
| 5 | finds1.4 | . . . 4 ⊢ 𝜓 | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (∅ = ∅ → 𝜓) |
| 7 | finds1.5 | . . . 4 ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) | |
| 8 | 7 | a1d 22 | . . 3 ⊢ (𝑦 ∈ ω → (∅ = ∅ → (𝜒 → 𝜃))) |
| 9 | 2, 3, 4, 6, 8 | finds2 4654 | . 2 ⊢ (𝑥 ∈ ω → (∅ = ∅ → 𝜑)) |
| 10 | 1, 9 | mpi 15 | 1 ⊢ (𝑥 ∈ ω → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∅c0 3462 suc csuc 4417 ωcom 4643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-uni 3854 df-int 3889 df-suc 4423 df-iom 4644 |
| This theorem is referenced by: findcard 6997 findcard2 6998 findcard2s 6999 |
| Copyright terms: Public domain | W3C validator |