ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  finds1 GIF version

Theorem finds1 4691
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 22-Mar-2006.)
Hypotheses
Ref Expression
finds1.1 (𝑥 = ∅ → (𝜑𝜓))
finds1.2 (𝑥 = 𝑦 → (𝜑𝜒))
finds1.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
finds1.4 𝜓
finds1.5 (𝑦 ∈ ω → (𝜒𝜃))
Assertion
Ref Expression
finds1 (𝑥 ∈ ω → 𝜑)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)

Proof of Theorem finds1
StepHypRef Expression
1 eqid 2229 . 2 ∅ = ∅
2 finds1.1 . . 3 (𝑥 = ∅ → (𝜑𝜓))
3 finds1.2 . . 3 (𝑥 = 𝑦 → (𝜑𝜒))
4 finds1.3 . . 3 (𝑥 = suc 𝑦 → (𝜑𝜃))
5 finds1.4 . . . 4 𝜓
65a1i 9 . . 3 (∅ = ∅ → 𝜓)
7 finds1.5 . . . 4 (𝑦 ∈ ω → (𝜒𝜃))
87a1d 22 . . 3 (𝑦 ∈ ω → (∅ = ∅ → (𝜒𝜃)))
92, 3, 4, 6, 8finds2 4690 . 2 (𝑥 ∈ ω → (∅ = ∅ → 𝜑))
101, 9mpi 15 1 (𝑥 ∈ ω → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wcel 2200  c0 3491  suc csuc 4453  ωcom 4679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-int 3923  df-suc 4459  df-iom 4680
This theorem is referenced by:  findcard  7038  findcard2  7039  findcard2s  7040
  Copyright terms: Public domain W3C validator