ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  finds1 GIF version

Theorem finds1 4635
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 22-Mar-2006.)
Hypotheses
Ref Expression
finds1.1 (𝑥 = ∅ → (𝜑𝜓))
finds1.2 (𝑥 = 𝑦 → (𝜑𝜒))
finds1.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
finds1.4 𝜓
finds1.5 (𝑦 ∈ ω → (𝜒𝜃))
Assertion
Ref Expression
finds1 (𝑥 ∈ ω → 𝜑)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)

Proof of Theorem finds1
StepHypRef Expression
1 eqid 2193 . 2 ∅ = ∅
2 finds1.1 . . 3 (𝑥 = ∅ → (𝜑𝜓))
3 finds1.2 . . 3 (𝑥 = 𝑦 → (𝜑𝜒))
4 finds1.3 . . 3 (𝑥 = suc 𝑦 → (𝜑𝜃))
5 finds1.4 . . . 4 𝜓
65a1i 9 . . 3 (∅ = ∅ → 𝜓)
7 finds1.5 . . . 4 (𝑦 ∈ ω → (𝜒𝜃))
87a1d 22 . . 3 (𝑦 ∈ ω → (∅ = ∅ → (𝜒𝜃)))
92, 3, 4, 6, 8finds2 4634 . 2 (𝑥 ∈ ω → (∅ = ∅ → 𝜑))
101, 9mpi 15 1 (𝑥 ∈ ω → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2164  c0 3447  suc csuc 4397  ωcom 4623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-uni 3837  df-int 3872  df-suc 4403  df-iom 4624
This theorem is referenced by:  findcard  6946  findcard2  6947  findcard2s  6948
  Copyright terms: Public domain W3C validator