ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  finds1 GIF version

Theorem finds1 4655
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 22-Mar-2006.)
Hypotheses
Ref Expression
finds1.1 (𝑥 = ∅ → (𝜑𝜓))
finds1.2 (𝑥 = 𝑦 → (𝜑𝜒))
finds1.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
finds1.4 𝜓
finds1.5 (𝑦 ∈ ω → (𝜒𝜃))
Assertion
Ref Expression
finds1 (𝑥 ∈ ω → 𝜑)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)

Proof of Theorem finds1
StepHypRef Expression
1 eqid 2206 . 2 ∅ = ∅
2 finds1.1 . . 3 (𝑥 = ∅ → (𝜑𝜓))
3 finds1.2 . . 3 (𝑥 = 𝑦 → (𝜑𝜒))
4 finds1.3 . . 3 (𝑥 = suc 𝑦 → (𝜑𝜃))
5 finds1.4 . . . 4 𝜓
65a1i 9 . . 3 (∅ = ∅ → 𝜓)
7 finds1.5 . . . 4 (𝑦 ∈ ω → (𝜒𝜃))
87a1d 22 . . 3 (𝑦 ∈ ω → (∅ = ∅ → (𝜒𝜃)))
92, 3, 4, 6, 8finds2 4654 . 2 (𝑥 ∈ ω → (∅ = ∅ → 𝜑))
101, 9mpi 15 1 (𝑥 ∈ ω → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wcel 2177  c0 3462  suc csuc 4417  ωcom 4643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-iinf 4641
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-uni 3854  df-int 3889  df-suc 4423  df-iom 4644
This theorem is referenced by:  findcard  6997  findcard2  6998  findcard2s  6999
  Copyright terms: Public domain W3C validator