| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > finds1 | GIF version | ||
| Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 22-Mar-2006.) |
| Ref | Expression |
|---|---|
| finds1.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
| finds1.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| finds1.3 | ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) |
| finds1.4 | ⊢ 𝜓 |
| finds1.5 | ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| finds1 | ⊢ (𝑥 ∈ ω → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . 2 ⊢ ∅ = ∅ | |
| 2 | finds1.1 | . . 3 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
| 3 | finds1.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 4 | finds1.3 | . . 3 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) | |
| 5 | finds1.4 | . . . 4 ⊢ 𝜓 | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (∅ = ∅ → 𝜓) |
| 7 | finds1.5 | . . . 4 ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) | |
| 8 | 7 | a1d 22 | . . 3 ⊢ (𝑦 ∈ ω → (∅ = ∅ → (𝜒 → 𝜃))) |
| 9 | 2, 3, 4, 6, 8 | finds2 4690 | . 2 ⊢ (𝑥 ∈ ω → (∅ = ∅ → 𝜑)) |
| 10 | 1, 9 | mpi 15 | 1 ⊢ (𝑥 ∈ ω → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∅c0 3491 suc csuc 4453 ωcom 4679 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-iinf 4677 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-int 3923 df-suc 4459 df-iom 4680 |
| This theorem is referenced by: findcard 7038 findcard2 7039 findcard2s 7040 |
| Copyright terms: Public domain | W3C validator |