ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  finds2 Unicode version

Theorem finds2 4510
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 29-Nov-2002.)
Hypotheses
Ref Expression
finds2.1  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
finds2.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
finds2.3  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
finds2.4  |-  ( ta 
->  ps )
finds2.5  |-  ( y  e.  om  ->  ( ta  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
finds2  |-  ( x  e.  om  ->  ( ta  ->  ph ) )
Distinct variable groups:    x, y, ta    ps, x    ch, x    th, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)

Proof of Theorem finds2
StepHypRef Expression
1 finds2.4 . . . . 5  |-  ( ta 
->  ps )
2 0ex 4050 . . . . . 6  |-  (/)  e.  _V
3 finds2.1 . . . . . . 7  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
43imbi2d 229 . . . . . 6  |-  ( x  =  (/)  ->  ( ( ta  ->  ph )  <->  ( ta  ->  ps ) ) )
52, 4elab 2823 . . . . 5  |-  ( (/)  e.  { x  |  ( ta  ->  ph ) }  <-> 
( ta  ->  ps ) )
61, 5mpbir 145 . . . 4  |-  (/)  e.  {
x  |  ( ta 
->  ph ) }
7 finds2.5 . . . . . . 7  |-  ( y  e.  om  ->  ( ta  ->  ( ch  ->  th ) ) )
87a2d 26 . . . . . 6  |-  ( y  e.  om  ->  (
( ta  ->  ch )  ->  ( ta  ->  th ) ) )
9 vex 2684 . . . . . . 7  |-  y  e. 
_V
10 finds2.2 . . . . . . . 8  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
1110imbi2d 229 . . . . . . 7  |-  ( x  =  y  ->  (
( ta  ->  ph )  <->  ( ta  ->  ch )
) )
129, 11elab 2823 . . . . . 6  |-  ( y  e.  { x  |  ( ta  ->  ph ) } 
<->  ( ta  ->  ch ) )
139sucex 4410 . . . . . . 7  |-  suc  y  e.  _V
14 finds2.3 . . . . . . . 8  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
1514imbi2d 229 . . . . . . 7  |-  ( x  =  suc  y  -> 
( ( ta  ->  ph )  <->  ( ta  ->  th ) ) )
1613, 15elab 2823 . . . . . 6  |-  ( suc  y  e.  { x  |  ( ta  ->  ph ) }  <->  ( ta  ->  th ) )
178, 12, 163imtr4g 204 . . . . 5  |-  ( y  e.  om  ->  (
y  e.  { x  |  ( ta  ->  ph ) }  ->  suc  y  e.  { x  |  ( ta  ->  ph ) } ) )
1817rgen 2483 . . . 4  |-  A. y  e.  om  ( y  e. 
{ x  |  ( ta  ->  ph ) }  ->  suc  y  e.  { x  |  ( ta 
->  ph ) } )
19 peano5 4507 . . . 4  |-  ( (
(/)  e.  { x  |  ( ta  ->  ph ) }  /\  A. y  e.  om  (
y  e.  { x  |  ( ta  ->  ph ) }  ->  suc  y  e.  { x  |  ( ta  ->  ph ) } ) )  ->  om  C_  { x  |  ( ta  ->  ph ) } )
206, 18, 19mp2an 422 . . 3  |-  om  C_  { x  |  ( ta  ->  ph ) }
2120sseli 3088 . 2  |-  ( x  e.  om  ->  x  e.  { x  |  ( ta  ->  ph ) } )
22 abid 2125 . 2  |-  ( x  e.  { x  |  ( ta  ->  ph ) } 
<->  ( ta  ->  ph )
)
2321, 22sylib 121 1  |-  ( x  e.  om  ->  ( ta  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1331    e. wcel 1480   {cab 2123   A.wral 2414    C_ wss 3066   (/)c0 3358   suc csuc 4282   omcom 4499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-uni 3732  df-int 3767  df-suc 4288  df-iom 4500
This theorem is referenced by:  finds1  4511  frecrdg  6298  nnacl  6369  nnmcl  6370  nnacom  6373  nnaass  6374  nndi  6375  nnmass  6376  nnmsucr  6377  nnmcom  6378  nnsucsssuc  6381  nntri3or  6382  nnaordi  6397  nnaword  6400  nnmordi  6405  nnaordex  6416  fiintim  6810  prarloclem3  7298  frec2uzuzd  10168  frec2uzrdg  10175
  Copyright terms: Public domain W3C validator