ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  finds2 Unicode version

Theorem finds2 4585
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 29-Nov-2002.)
Hypotheses
Ref Expression
finds2.1  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
finds2.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
finds2.3  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
finds2.4  |-  ( ta 
->  ps )
finds2.5  |-  ( y  e.  om  ->  ( ta  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
finds2  |-  ( x  e.  om  ->  ( ta  ->  ph ) )
Distinct variable groups:    x, y, ta    ps, x    ch, x    th, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)

Proof of Theorem finds2
StepHypRef Expression
1 finds2.4 . . . . 5  |-  ( ta 
->  ps )
2 0ex 4116 . . . . . 6  |-  (/)  e.  _V
3 finds2.1 . . . . . . 7  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
43imbi2d 229 . . . . . 6  |-  ( x  =  (/)  ->  ( ( ta  ->  ph )  <->  ( ta  ->  ps ) ) )
52, 4elab 2874 . . . . 5  |-  ( (/)  e.  { x  |  ( ta  ->  ph ) }  <-> 
( ta  ->  ps ) )
61, 5mpbir 145 . . . 4  |-  (/)  e.  {
x  |  ( ta 
->  ph ) }
7 finds2.5 . . . . . . 7  |-  ( y  e.  om  ->  ( ta  ->  ( ch  ->  th ) ) )
87a2d 26 . . . . . 6  |-  ( y  e.  om  ->  (
( ta  ->  ch )  ->  ( ta  ->  th ) ) )
9 vex 2733 . . . . . . 7  |-  y  e. 
_V
10 finds2.2 . . . . . . . 8  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
1110imbi2d 229 . . . . . . 7  |-  ( x  =  y  ->  (
( ta  ->  ph )  <->  ( ta  ->  ch )
) )
129, 11elab 2874 . . . . . 6  |-  ( y  e.  { x  |  ( ta  ->  ph ) } 
<->  ( ta  ->  ch ) )
139sucex 4483 . . . . . . 7  |-  suc  y  e.  _V
14 finds2.3 . . . . . . . 8  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
1514imbi2d 229 . . . . . . 7  |-  ( x  =  suc  y  -> 
( ( ta  ->  ph )  <->  ( ta  ->  th ) ) )
1613, 15elab 2874 . . . . . 6  |-  ( suc  y  e.  { x  |  ( ta  ->  ph ) }  <->  ( ta  ->  th ) )
178, 12, 163imtr4g 204 . . . . 5  |-  ( y  e.  om  ->  (
y  e.  { x  |  ( ta  ->  ph ) }  ->  suc  y  e.  { x  |  ( ta  ->  ph ) } ) )
1817rgen 2523 . . . 4  |-  A. y  e.  om  ( y  e. 
{ x  |  ( ta  ->  ph ) }  ->  suc  y  e.  { x  |  ( ta 
->  ph ) } )
19 peano5 4582 . . . 4  |-  ( (
(/)  e.  { x  |  ( ta  ->  ph ) }  /\  A. y  e.  om  (
y  e.  { x  |  ( ta  ->  ph ) }  ->  suc  y  e.  { x  |  ( ta  ->  ph ) } ) )  ->  om  C_  { x  |  ( ta  ->  ph ) } )
206, 18, 19mp2an 424 . . 3  |-  om  C_  { x  |  ( ta  ->  ph ) }
2120sseli 3143 . 2  |-  ( x  e.  om  ->  x  e.  { x  |  ( ta  ->  ph ) } )
22 abid 2158 . 2  |-  ( x  e.  { x  |  ( ta  ->  ph ) } 
<->  ( ta  ->  ph )
)
2321, 22sylib 121 1  |-  ( x  e.  om  ->  ( ta  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348    e. wcel 2141   {cab 2156   A.wral 2448    C_ wss 3121   (/)c0 3414   suc csuc 4350   omcom 4574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-int 3832  df-suc 4356  df-iom 4575
This theorem is referenced by:  finds1  4586  frecrdg  6387  nnacl  6459  nnmcl  6460  nnacom  6463  nnaass  6464  nndi  6465  nnmass  6466  nnmsucr  6467  nnmcom  6468  nnsucsssuc  6471  nntri3or  6472  nnaordi  6487  nnaword  6490  nnmordi  6495  nnaordex  6507  fiintim  6906  prarloclem3  7459  frec2uzuzd  10358  frec2uzrdg  10365
  Copyright terms: Public domain W3C validator