ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  finds2 Unicode version

Theorem finds2 4578
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 29-Nov-2002.)
Hypotheses
Ref Expression
finds2.1  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
finds2.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
finds2.3  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
finds2.4  |-  ( ta 
->  ps )
finds2.5  |-  ( y  e.  om  ->  ( ta  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
finds2  |-  ( x  e.  om  ->  ( ta  ->  ph ) )
Distinct variable groups:    x, y, ta    ps, x    ch, x    th, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)

Proof of Theorem finds2
StepHypRef Expression
1 finds2.4 . . . . 5  |-  ( ta 
->  ps )
2 0ex 4109 . . . . . 6  |-  (/)  e.  _V
3 finds2.1 . . . . . . 7  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
43imbi2d 229 . . . . . 6  |-  ( x  =  (/)  ->  ( ( ta  ->  ph )  <->  ( ta  ->  ps ) ) )
52, 4elab 2870 . . . . 5  |-  ( (/)  e.  { x  |  ( ta  ->  ph ) }  <-> 
( ta  ->  ps ) )
61, 5mpbir 145 . . . 4  |-  (/)  e.  {
x  |  ( ta 
->  ph ) }
7 finds2.5 . . . . . . 7  |-  ( y  e.  om  ->  ( ta  ->  ( ch  ->  th ) ) )
87a2d 26 . . . . . 6  |-  ( y  e.  om  ->  (
( ta  ->  ch )  ->  ( ta  ->  th ) ) )
9 vex 2729 . . . . . . 7  |-  y  e. 
_V
10 finds2.2 . . . . . . . 8  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
1110imbi2d 229 . . . . . . 7  |-  ( x  =  y  ->  (
( ta  ->  ph )  <->  ( ta  ->  ch )
) )
129, 11elab 2870 . . . . . 6  |-  ( y  e.  { x  |  ( ta  ->  ph ) } 
<->  ( ta  ->  ch ) )
139sucex 4476 . . . . . . 7  |-  suc  y  e.  _V
14 finds2.3 . . . . . . . 8  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
1514imbi2d 229 . . . . . . 7  |-  ( x  =  suc  y  -> 
( ( ta  ->  ph )  <->  ( ta  ->  th ) ) )
1613, 15elab 2870 . . . . . 6  |-  ( suc  y  e.  { x  |  ( ta  ->  ph ) }  <->  ( ta  ->  th ) )
178, 12, 163imtr4g 204 . . . . 5  |-  ( y  e.  om  ->  (
y  e.  { x  |  ( ta  ->  ph ) }  ->  suc  y  e.  { x  |  ( ta  ->  ph ) } ) )
1817rgen 2519 . . . 4  |-  A. y  e.  om  ( y  e. 
{ x  |  ( ta  ->  ph ) }  ->  suc  y  e.  { x  |  ( ta 
->  ph ) } )
19 peano5 4575 . . . 4  |-  ( (
(/)  e.  { x  |  ( ta  ->  ph ) }  /\  A. y  e.  om  (
y  e.  { x  |  ( ta  ->  ph ) }  ->  suc  y  e.  { x  |  ( ta  ->  ph ) } ) )  ->  om  C_  { x  |  ( ta  ->  ph ) } )
206, 18, 19mp2an 423 . . 3  |-  om  C_  { x  |  ( ta  ->  ph ) }
2120sseli 3138 . 2  |-  ( x  e.  om  ->  x  e.  { x  |  ( ta  ->  ph ) } )
22 abid 2153 . 2  |-  ( x  e.  { x  |  ( ta  ->  ph ) } 
<->  ( ta  ->  ph )
)
2321, 22sylib 121 1  |-  ( x  e.  om  ->  ( ta  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    e. wcel 2136   {cab 2151   A.wral 2444    C_ wss 3116   (/)c0 3409   suc csuc 4343   omcom 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-suc 4349  df-iom 4568
This theorem is referenced by:  finds1  4579  frecrdg  6376  nnacl  6448  nnmcl  6449  nnacom  6452  nnaass  6453  nndi  6454  nnmass  6455  nnmsucr  6456  nnmcom  6457  nnsucsssuc  6460  nntri3or  6461  nnaordi  6476  nnaword  6479  nnmordi  6484  nnaordex  6495  fiintim  6894  prarloclem3  7438  frec2uzuzd  10337  frec2uzrdg  10344
  Copyright terms: Public domain W3C validator