Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > finds2 | Unicode version |
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 29-Nov-2002.) |
Ref | Expression |
---|---|
finds2.1 | |
finds2.2 | |
finds2.3 | |
finds2.4 | |
finds2.5 |
Ref | Expression |
---|---|
finds2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | finds2.4 | . . . . 5 | |
2 | 0ex 4114 | . . . . . 6 | |
3 | finds2.1 | . . . . . . 7 | |
4 | 3 | imbi2d 229 | . . . . . 6 |
5 | 2, 4 | elab 2874 | . . . . 5 |
6 | 1, 5 | mpbir 145 | . . . 4 |
7 | finds2.5 | . . . . . . 7 | |
8 | 7 | a2d 26 | . . . . . 6 |
9 | vex 2733 | . . . . . . 7 | |
10 | finds2.2 | . . . . . . . 8 | |
11 | 10 | imbi2d 229 | . . . . . . 7 |
12 | 9, 11 | elab 2874 | . . . . . 6 |
13 | 9 | sucex 4481 | . . . . . . 7 |
14 | finds2.3 | . . . . . . . 8 | |
15 | 14 | imbi2d 229 | . . . . . . 7 |
16 | 13, 15 | elab 2874 | . . . . . 6 |
17 | 8, 12, 16 | 3imtr4g 204 | . . . . 5 |
18 | 17 | rgen 2523 | . . . 4 |
19 | peano5 4580 | . . . 4 | |
20 | 6, 18, 19 | mp2an 424 | . . 3 |
21 | 20 | sseli 3143 | . 2 |
22 | abid 2158 | . 2 | |
23 | 21, 22 | sylib 121 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 wcel 2141 cab 2156 wral 2448 wss 3121 c0 3414 csuc 4348 com 4572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-uni 3795 df-int 3830 df-suc 4354 df-iom 4573 |
This theorem is referenced by: finds1 4584 frecrdg 6384 nnacl 6456 nnmcl 6457 nnacom 6460 nnaass 6461 nndi 6462 nnmass 6463 nnmsucr 6464 nnmcom 6465 nnsucsssuc 6468 nntri3or 6469 nnaordi 6484 nnaword 6487 nnmordi 6492 nnaordex 6503 fiintim 6902 prarloclem3 7446 frec2uzuzd 10345 frec2uzrdg 10352 |
Copyright terms: Public domain | W3C validator |