ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftel1 Unicode version

Theorem fliftel1 5688
Description: Elementhood in the relation  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
flift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
flift.3  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
Assertion
Ref Expression
fliftel1  |-  ( (
ph  /\  x  e.  X )  ->  A F B )
Distinct variable groups:    x, R    ph, x    x, X    x, S
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem fliftel1
StepHypRef Expression
1 flift.2 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
2 flift.3 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
3 opexg 4145 . . . . 5  |-  ( ( A  e.  R  /\  B  e.  S )  -> 
<. A ,  B >.  e. 
_V )
41, 2, 3syl2anc 408 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  <. A ,  B >.  e.  _V )
5 eqid 2137 . . . . . 6  |-  ( x  e.  X  |->  <. A ,  B >. )  =  ( x  e.  X  |->  <. A ,  B >. )
65elrnmpt1 4785 . . . . 5  |-  ( ( x  e.  X  /\  <. A ,  B >.  e. 
_V )  ->  <. A ,  B >.  e.  ran  (
x  e.  X  |->  <. A ,  B >. ) )
76adantll 467 . . . 4  |-  ( ( ( ph  /\  x  e.  X )  /\  <. A ,  B >.  e.  _V )  ->  <. A ,  B >.  e.  ran  ( x  e.  X  |->  <. A ,  B >. ) )
84, 7mpdan 417 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  <. A ,  B >.  e.  ran  (
x  e.  X  |->  <. A ,  B >. ) )
9 flift.1 . . 3  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
108, 9eleqtrrdi 2231 . 2  |-  ( (
ph  /\  x  e.  X )  ->  <. A ,  B >.  e.  F )
11 df-br 3925 . 2  |-  ( A F B  <->  <. A ,  B >.  e.  F )
1210, 11sylibr 133 1  |-  ( (
ph  /\  x  e.  X )  ->  A F B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   _Vcvv 2681   <.cop 3525   class class class wbr 3924    |-> cmpt 3984   ran crn 4535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-rex 2420  df-v 2683  df-sbc 2905  df-csb 2999  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-br 3925  df-opab 3985  df-mpt 3986  df-cnv 4542  df-dm 4544  df-rn 4545
This theorem is referenced by:  fliftfun  5690  qliftel1  6503
  Copyright terms: Public domain W3C validator