ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qliftel1 Unicode version

Theorem qliftel1 6616
Description: Elementhood in the relation  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1  |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )
qlift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  Y )
qlift.3  |-  ( ph  ->  R  Er  X )
qlift.4  |-  ( ph  ->  X  e.  _V )
Assertion
Ref Expression
qliftel1  |-  ( (
ph  /\  x  e.  X )  ->  [ x ] R F A )
Distinct variable groups:    ph, x    x, R    x, X    x, Y
Allowed substitution hints:    A( x)    F( x)

Proof of Theorem qliftel1
StepHypRef Expression
1 qlift.1 . 2  |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )
2 qlift.2 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  Y )
3 qlift.3 . . 3  |-  ( ph  ->  R  Er  X )
4 qlift.4 . . 3  |-  ( ph  ->  X  e.  _V )
51, 2, 3, 4qliftlem 6613 . 2  |-  ( (
ph  /\  x  e.  X )  ->  [ x ] R  e.  ( X /. R ) )
61, 5, 2fliftel1 5795 1  |-  ( (
ph  /\  x  e.  X )  ->  [ x ] R F A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   _Vcvv 2738   <.cop 3596   class class class wbr 4004    |-> cmpt 4065   ran crn 4628    Er wer 6532   [cec 6533   /.cqs 6534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-sbc 2964  df-csb 3059  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-mpt 4067  df-xp 4633  df-rel 4634  df-cnv 4635  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-er 6535  df-ec 6537  df-qs 6541
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator