ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qliftel1 Unicode version

Theorem qliftel1 6464
Description: Elementhood in the relation  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1  |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )
qlift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  Y )
qlift.3  |-  ( ph  ->  R  Er  X )
qlift.4  |-  ( ph  ->  X  e.  _V )
Assertion
Ref Expression
qliftel1  |-  ( (
ph  /\  x  e.  X )  ->  [ x ] R F A )
Distinct variable groups:    ph, x    x, R    x, X    x, Y
Allowed substitution hints:    A( x)    F( x)

Proof of Theorem qliftel1
StepHypRef Expression
1 qlift.1 . 2  |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )
2 qlift.2 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  Y )
3 qlift.3 . . 3  |-  ( ph  ->  R  Er  X )
4 qlift.4 . . 3  |-  ( ph  ->  X  e.  _V )
51, 2, 3, 4qliftlem 6461 . 2  |-  ( (
ph  /\  x  e.  X )  ->  [ x ] R  e.  ( X /. R ) )
61, 5, 2fliftel1 5649 1  |-  ( (
ph  /\  x  e.  X )  ->  [ x ] R F A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1314    e. wcel 1463   _Vcvv 2657   <.cop 3496   class class class wbr 3895    |-> cmpt 3949   ran crn 4500    Er wer 6380   [cec 6381   /.cqs 6382
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-sbc 2879  df-csb 2972  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-mpt 3951  df-xp 4505  df-rel 4506  df-cnv 4507  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-er 6383  df-ec 6385  df-qs 6389
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator