ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftel1 GIF version

Theorem fliftel1 5627
Description: Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
flift.2 ((𝜑𝑥𝑋) → 𝐴𝑅)
flift.3 ((𝜑𝑥𝑋) → 𝐵𝑆)
Assertion
Ref Expression
fliftel1 ((𝜑𝑥𝑋) → 𝐴𝐹𝐵)
Distinct variable groups:   𝑥,𝑅   𝜑,𝑥   𝑥,𝑋   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fliftel1
StepHypRef Expression
1 flift.2 . . . . 5 ((𝜑𝑥𝑋) → 𝐴𝑅)
2 flift.3 . . . . 5 ((𝜑𝑥𝑋) → 𝐵𝑆)
3 opexg 4088 . . . . 5 ((𝐴𝑅𝐵𝑆) → ⟨𝐴, 𝐵⟩ ∈ V)
41, 2, 3syl2anc 406 . . . 4 ((𝜑𝑥𝑋) → ⟨𝐴, 𝐵⟩ ∈ V)
5 eqid 2100 . . . . . 6 (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) = (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
65elrnmpt1 4728 . . . . 5 ((𝑥𝑋 ∧ ⟨𝐴, 𝐵⟩ ∈ V) → ⟨𝐴, 𝐵⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
76adantll 463 . . . 4 (((𝜑𝑥𝑋) ∧ ⟨𝐴, 𝐵⟩ ∈ V) → ⟨𝐴, 𝐵⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
84, 7mpdan 415 . . 3 ((𝜑𝑥𝑋) → ⟨𝐴, 𝐵⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
9 flift.1 . . 3 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
108, 9syl6eleqr 2193 . 2 ((𝜑𝑥𝑋) → ⟨𝐴, 𝐵⟩ ∈ 𝐹)
11 df-br 3876 . 2 (𝐴𝐹𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹)
1210, 11sylibr 133 1 ((𝜑𝑥𝑋) → 𝐴𝐹𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1299  wcel 1448  Vcvv 2641  cop 3477   class class class wbr 3875  cmpt 3929  ran crn 4478
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-rex 2381  df-v 2643  df-sbc 2863  df-csb 2956  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-br 3876  df-opab 3930  df-mpt 3931  df-cnv 4485  df-dm 4487  df-rn 4488
This theorem is referenced by:  fliftfun  5629  qliftel1  6440
  Copyright terms: Public domain W3C validator