ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftel1 GIF version

Theorem fliftel1 5841
Description: Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
flift.2 ((𝜑𝑥𝑋) → 𝐴𝑅)
flift.3 ((𝜑𝑥𝑋) → 𝐵𝑆)
Assertion
Ref Expression
fliftel1 ((𝜑𝑥𝑋) → 𝐴𝐹𝐵)
Distinct variable groups:   𝑥,𝑅   𝜑,𝑥   𝑥,𝑋   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fliftel1
StepHypRef Expression
1 flift.2 . . . . 5 ((𝜑𝑥𝑋) → 𝐴𝑅)
2 flift.3 . . . . 5 ((𝜑𝑥𝑋) → 𝐵𝑆)
3 opexg 4261 . . . . 5 ((𝐴𝑅𝐵𝑆) → ⟨𝐴, 𝐵⟩ ∈ V)
41, 2, 3syl2anc 411 . . . 4 ((𝜑𝑥𝑋) → ⟨𝐴, 𝐵⟩ ∈ V)
5 eqid 2196 . . . . . 6 (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) = (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
65elrnmpt1 4917 . . . . 5 ((𝑥𝑋 ∧ ⟨𝐴, 𝐵⟩ ∈ V) → ⟨𝐴, 𝐵⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
76adantll 476 . . . 4 (((𝜑𝑥𝑋) ∧ ⟨𝐴, 𝐵⟩ ∈ V) → ⟨𝐴, 𝐵⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
84, 7mpdan 421 . . 3 ((𝜑𝑥𝑋) → ⟨𝐴, 𝐵⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
9 flift.1 . . 3 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
108, 9eleqtrrdi 2290 . 2 ((𝜑𝑥𝑋) → ⟨𝐴, 𝐵⟩ ∈ 𝐹)
11 df-br 4034 . 2 (𝐴𝐹𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹)
1210, 11sylibr 134 1 ((𝜑𝑥𝑋) → 𝐴𝐹𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  Vcvv 2763  cop 3625   class class class wbr 4033  cmpt 4094  ran crn 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-mpt 4096  df-cnv 4671  df-dm 4673  df-rn 4674
This theorem is referenced by:  fliftfun  5843  qliftel1  6675
  Copyright terms: Public domain W3C validator