ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnunirn Unicode version

Theorem fnunirn 5891
Description: Membership in a union of some function-defined family of sets. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
fnunirn  |-  ( F  Fn  I  ->  ( A  e.  U. ran  F  <->  E. x  e.  I  A  e.  ( F `  x ) ) )
Distinct variable groups:    x, A    x, I    x, F

Proof of Theorem fnunirn
StepHypRef Expression
1 fnfun 5418 . . 3  |-  ( F  Fn  I  ->  Fun  F )
2 elunirn 5890 . . 3  |-  ( Fun 
F  ->  ( A  e.  U. ran  F  <->  E. x  e.  dom  F  A  e.  ( F `  x
) ) )
31, 2syl 14 . 2  |-  ( F  Fn  I  ->  ( A  e.  U. ran  F  <->  E. x  e.  dom  F  A  e.  ( F `  x ) ) )
4 fndm 5420 . . 3  |-  ( F  Fn  I  ->  dom  F  =  I )
54rexeqdv 2735 . 2  |-  ( F  Fn  I  ->  ( E. x  e.  dom  F  A  e.  ( F `
 x )  <->  E. x  e.  I  A  e.  ( F `  x ) ) )
63, 5bitrd 188 1  |-  ( F  Fn  I  ->  ( A  e.  U. ran  F  <->  E. x  e.  I  A  e.  ( F `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2200   E.wrex 2509   U.cuni 3888   dom cdm 4719   ran crn 4720   Fun wfun 5312    Fn wfn 5313   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326
This theorem is referenced by:  xmetunirn  15032
  Copyright terms: Public domain W3C validator