ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foun Unicode version

Theorem foun 5482
Description: The union of two onto functions with disjoint domains is an onto function. (Contributed by Mario Carneiro, 22-Jun-2016.)
Assertion
Ref Expression
foun  |-  ( ( ( F : A -onto-> B  /\  G : C -onto-> D )  /\  ( A  i^i  C )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  C
) -onto-> ( B  u.  D ) )

Proof of Theorem foun
StepHypRef Expression
1 fofn 5442 . . . 4  |-  ( F : A -onto-> B  ->  F  Fn  A )
2 fofn 5442 . . . 4  |-  ( G : C -onto-> D  ->  G  Fn  C )
31, 2anim12i 338 . . 3  |-  ( ( F : A -onto-> B  /\  G : C -onto-> D
)  ->  ( F  Fn  A  /\  G  Fn  C ) )
4 fnun 5324 . . 3  |-  ( ( ( F  Fn  A  /\  G  Fn  C
)  /\  ( A  i^i  C )  =  (/) )  ->  ( F  u.  G )  Fn  ( A  u.  C )
)
53, 4sylan 283 . 2  |-  ( ( ( F : A -onto-> B  /\  G : C -onto-> D )  /\  ( A  i^i  C )  =  (/) )  ->  ( F  u.  G )  Fn  ( A  u.  C
) )
6 rnun 5039 . . 3  |-  ran  ( F  u.  G )  =  ( ran  F  u.  ran  G )
7 forn 5443 . . . . 5  |-  ( F : A -onto-> B  ->  ran  F  =  B )
87ad2antrr 488 . . . 4  |-  ( ( ( F : A -onto-> B  /\  G : C -onto-> D )  /\  ( A  i^i  C )  =  (/) )  ->  ran  F  =  B )
9 forn 5443 . . . . 5  |-  ( G : C -onto-> D  ->  ran  G  =  D )
109ad2antlr 489 . . . 4  |-  ( ( ( F : A -onto-> B  /\  G : C -onto-> D )  /\  ( A  i^i  C )  =  (/) )  ->  ran  G  =  D )
118, 10uneq12d 3292 . . 3  |-  ( ( ( F : A -onto-> B  /\  G : C -onto-> D )  /\  ( A  i^i  C )  =  (/) )  ->  ( ran 
F  u.  ran  G
)  =  ( B  u.  D ) )
126, 11eqtrid 2222 . 2  |-  ( ( ( F : A -onto-> B  /\  G : C -onto-> D )  /\  ( A  i^i  C )  =  (/) )  ->  ran  ( F  u.  G )  =  ( B  u.  D ) )
13 df-fo 5224 . 2  |-  ( ( F  u.  G ) : ( A  u.  C ) -onto-> ( B  u.  D )  <->  ( ( F  u.  G )  Fn  ( A  u.  C
)  /\  ran  ( F  u.  G )  =  ( B  u.  D
) ) )
145, 12, 13sylanbrc 417 1  |-  ( ( ( F : A -onto-> B  /\  G : C -onto-> D )  /\  ( A  i^i  C )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  C
) -onto-> ( B  u.  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    u. cun 3129    i^i cin 3130   (/)c0 3424   ran crn 4629    Fn wfn 5213   -onto->wfo 5216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-id 4295  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-fun 5220  df-fn 5221  df-f 5222  df-fo 5224
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator