ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foun Unicode version

Theorem foun 5379
Description: The union of two onto functions with disjoint domains is an onto function. (Contributed by Mario Carneiro, 22-Jun-2016.)
Assertion
Ref Expression
foun  |-  ( ( ( F : A -onto-> B  /\  G : C -onto-> D )  /\  ( A  i^i  C )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  C
) -onto-> ( B  u.  D ) )

Proof of Theorem foun
StepHypRef Expression
1 fofn 5342 . . . 4  |-  ( F : A -onto-> B  ->  F  Fn  A )
2 fofn 5342 . . . 4  |-  ( G : C -onto-> D  ->  G  Fn  C )
31, 2anim12i 336 . . 3  |-  ( ( F : A -onto-> B  /\  G : C -onto-> D
)  ->  ( F  Fn  A  /\  G  Fn  C ) )
4 fnun 5224 . . 3  |-  ( ( ( F  Fn  A  /\  G  Fn  C
)  /\  ( A  i^i  C )  =  (/) )  ->  ( F  u.  G )  Fn  ( A  u.  C )
)
53, 4sylan 281 . 2  |-  ( ( ( F : A -onto-> B  /\  G : C -onto-> D )  /\  ( A  i^i  C )  =  (/) )  ->  ( F  u.  G )  Fn  ( A  u.  C
) )
6 rnun 4942 . . 3  |-  ran  ( F  u.  G )  =  ( ran  F  u.  ran  G )
7 forn 5343 . . . . 5  |-  ( F : A -onto-> B  ->  ran  F  =  B )
87ad2antrr 479 . . . 4  |-  ( ( ( F : A -onto-> B  /\  G : C -onto-> D )  /\  ( A  i^i  C )  =  (/) )  ->  ran  F  =  B )
9 forn 5343 . . . . 5  |-  ( G : C -onto-> D  ->  ran  G  =  D )
109ad2antlr 480 . . . 4  |-  ( ( ( F : A -onto-> B  /\  G : C -onto-> D )  /\  ( A  i^i  C )  =  (/) )  ->  ran  G  =  D )
118, 10uneq12d 3226 . . 3  |-  ( ( ( F : A -onto-> B  /\  G : C -onto-> D )  /\  ( A  i^i  C )  =  (/) )  ->  ( ran 
F  u.  ran  G
)  =  ( B  u.  D ) )
126, 11syl5eq 2182 . 2  |-  ( ( ( F : A -onto-> B  /\  G : C -onto-> D )  /\  ( A  i^i  C )  =  (/) )  ->  ran  ( F  u.  G )  =  ( B  u.  D ) )
13 df-fo 5124 . 2  |-  ( ( F  u.  G ) : ( A  u.  C ) -onto-> ( B  u.  D )  <->  ( ( F  u.  G )  Fn  ( A  u.  C
)  /\  ran  ( F  u.  G )  =  ( B  u.  D
) ) )
145, 12, 13sylanbrc 413 1  |-  ( ( ( F : A -onto-> B  /\  G : C -onto-> D )  /\  ( A  i^i  C )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  C
) -onto-> ( B  u.  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    u. cun 3064    i^i cin 3065   (/)c0 3358   ran crn 4535    Fn wfn 5113   -onto->wfo 5116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-v 2683  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-br 3925  df-opab 3985  df-id 4210  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-fun 5120  df-fn 5121  df-f 5122  df-fo 5124
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator