ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fovrnda Unicode version

Theorem fovrnda 5993
Description: An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypothesis
Ref Expression
fovrnd.1  |-  ( ph  ->  F : ( R  X.  S ) --> C )
Assertion
Ref Expression
fovrnda  |-  ( (
ph  /\  ( A  e.  R  /\  B  e.  S ) )  -> 
( A F B )  e.  C )

Proof of Theorem fovrnda
StepHypRef Expression
1 fovrnd.1 . . 3  |-  ( ph  ->  F : ( R  X.  S ) --> C )
2 fovrn 5992 . . 3  |-  ( ( F : ( R  X.  S ) --> C  /\  A  e.  R  /\  B  e.  S
)  ->  ( A F B )  e.  C
)
31, 2syl3an1 1266 . 2  |-  ( (
ph  /\  A  e.  R  /\  B  e.  S
)  ->  ( A F B )  e.  C
)
433expb 1199 1  |-  ( (
ph  /\  ( A  e.  R  /\  B  e.  S ) )  -> 
( A F B )  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2141    X. cxp 4607   -->wf 5192  (class class class)co 5850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fv 5204  df-ov 5853
This theorem is referenced by:  eroprf  6602  isxmet2d  13101
  Copyright terms: Public domain W3C validator