ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fovrnda Unicode version

Theorem fovrnda 5985
Description: An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypothesis
Ref Expression
fovrnd.1  |-  ( ph  ->  F : ( R  X.  S ) --> C )
Assertion
Ref Expression
fovrnda  |-  ( (
ph  /\  ( A  e.  R  /\  B  e.  S ) )  -> 
( A F B )  e.  C )

Proof of Theorem fovrnda
StepHypRef Expression
1 fovrnd.1 . . 3  |-  ( ph  ->  F : ( R  X.  S ) --> C )
2 fovrn 5984 . . 3  |-  ( ( F : ( R  X.  S ) --> C  /\  A  e.  R  /\  B  e.  S
)  ->  ( A F B )  e.  C
)
31, 2syl3an1 1261 . 2  |-  ( (
ph  /\  A  e.  R  /\  B  e.  S
)  ->  ( A F B )  e.  C
)
433expb 1194 1  |-  ( (
ph  /\  ( A  e.  R  /\  B  e.  S ) )  -> 
( A F B )  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2136    X. cxp 4602   -->wf 5184  (class class class)co 5842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845
This theorem is referenced by:  eroprf  6594  isxmet2d  12988
  Copyright terms: Public domain W3C validator