ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumcl2lem Unicode version

Theorem fsumcl2lem 11909
Description: - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by Mario Carneiro, 3-Jun-2014.)
Hypotheses
Ref Expression
fsumcllem.1  |-  ( ph  ->  S  C_  CC )
fsumcllem.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
fsumcllem.3  |-  ( ph  ->  A  e.  Fin )
fsumcllem.4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  S )
fsumcl2lem.5  |-  ( ph  ->  A  =/=  (/) )
Assertion
Ref Expression
fsumcl2lem  |-  ( ph  -> 
sum_ k  e.  A  B  e.  S )
Distinct variable groups:    A, k, x, y    x, B, y    S, k, x, y    ph, k, x, y
Allowed substitution hint:    B( k)

Proof of Theorem fsumcl2lem
Dummy variables  a  f  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsumcl2lem.5 . . . 4  |-  ( ph  ->  A  =/=  (/) )
21neneqd 2421 . . 3  |-  ( ph  ->  -.  A  =  (/) )
32pm2.21d 622 . 2  |-  ( ph  ->  ( A  =  (/)  -> 
sum_ k  e.  A  B  e.  S )
)
4 fsumcllem.1 . . . . . . . . . . . 12  |-  ( ph  ->  S  C_  CC )
54adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  S  C_  CC )
6 fsumcllem.4 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  S )
75, 6sseldd 3225 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
87ralrimiva 2603 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
9 sumfct 11885 . . . . . . . . 9  |-  ( A. k  e.  A  B  e.  CC  ->  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `
 m )  = 
sum_ k  e.  A  B )
108, 9syl 14 . . . . . . . 8  |-  ( ph  -> 
sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m )  =  sum_ k  e.  A  B
)
1110adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m
)  =  sum_ k  e.  A  B )
12 fveq2 5627 . . . . . . . 8  |-  ( m  =  ( f `  a )  ->  (
( k  e.  A  |->  B ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( f `
 a ) ) )
13 simprl 529 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
( `  A )  e.  NN )
14 simprr 531 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A )
154ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  S  C_  CC )
166fmpttd 5790 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  A  |->  B ) : A --> S )
1716adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
( k  e.  A  |->  B ) : A --> S )
1817ffvelcdmda 5770 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  (
( k  e.  A  |->  B ) `  m
)  e.  S )
1915, 18sseldd 3225 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  (
( k  e.  A  |->  B ) `  m
)  e.  CC )
20 f1of 5572 . . . . . . . . . 10  |-  ( f : ( 1 ... ( `  A )
)
-1-1-onto-> A  ->  f : ( 1 ... ( `  A
) ) --> A )
2114, 20syl 14 . . . . . . . . 9  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
f : ( 1 ... ( `  A
) ) --> A )
22 fvco3 5705 . . . . . . . . 9  |-  ( ( f : ( 1 ... ( `  A
) ) --> A  /\  a  e.  ( 1 ... ( `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  a )  =  ( ( k  e.  A  |->  B ) `  (
f `  a )
) )
2321, 22sylan 283 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  a  e.  ( 1 ... ( `  A ) ) )  ->  ( ( ( k  e.  A  |->  B )  o.  f ) `
 a )  =  ( ( k  e.  A  |->  B ) `  ( f `  a
) ) )
2412, 13, 14, 19, 23fsum3 11898 . . . . . . 7  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m
)  =  (  seq 1 (  +  , 
( a  e.  NN  |->  if ( a  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  a
) ,  0 ) ) ) `  ( `  A ) ) )
2511, 24eqtr3d 2264 . . . . . 6  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  sum_ k  e.  A  B  =  (  seq 1
(  +  ,  ( a  e.  NN  |->  if ( a  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  a
) ,  0 ) ) ) `  ( `  A ) ) )
26 nnuz 9758 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
2713, 26eleqtrdi 2322 . . . . . . 7  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
( `  A )  e.  ( ZZ>= `  1 )
)
28 elnnuz 9759 . . . . . . . . . . 11  |-  ( x  e.  NN  <->  x  e.  ( ZZ>= `  1 )
)
2928biimpri 133 . . . . . . . . . 10  |-  ( x  e.  ( ZZ>= `  1
)  ->  x  e.  NN )
3029adantl 277 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  ( ZZ>= `  1 )
)  ->  x  e.  NN )
314ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  NN )  /\  x  <_  ( `  A )
)  ->  S  C_  CC )
3217ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  NN )  /\  x  <_  ( `  A )
)  ->  ( k  e.  A  |->  B ) : A --> S )
3321ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  NN )  /\  x  <_  ( `  A )
)  ->  f :
( 1 ... ( `  A ) ) --> A )
34 fco 5489 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  A  |->  B ) : A --> S  /\  f : ( 1 ... ( `  A
) ) --> A )  ->  ( ( k  e.  A  |->  B )  o.  f ) : ( 1 ... ( `  A ) ) --> S )
3532, 33, 34syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  NN )  /\  x  <_  ( `  A )
)  ->  ( (
k  e.  A  |->  B )  o.  f ) : ( 1 ... ( `  A )
) --> S )
36 1zzd 9473 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  NN )  /\  x  <_  ( `  A )
)  ->  1  e.  ZZ )
3713ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  NN )  /\  x  <_  ( `  A )
)  ->  ( `  A
)  e.  NN )
3837nnzd 9568 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  NN )  /\  x  <_  ( `  A )
)  ->  ( `  A
)  e.  ZZ )
39 simpr 110 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  NN )  ->  x  e.  NN )
4039adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  NN )  /\  x  <_  ( `  A )
)  ->  x  e.  NN )
4140nnzd 9568 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  NN )  /\  x  <_  ( `  A )
)  ->  x  e.  ZZ )
4236, 38, 413jca 1201 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  NN )  /\  x  <_  ( `  A )
)  ->  ( 1  e.  ZZ  /\  ( `  A )  e.  ZZ  /\  x  e.  ZZ ) )
4340nnge1d 9153 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  NN )  /\  x  <_  ( `  A )
)  ->  1  <_  x )
44 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  NN )  /\  x  <_  ( `  A )
)  ->  x  <_  ( `  A ) )
4543, 44jca 306 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  NN )  /\  x  <_  ( `  A )
)  ->  ( 1  <_  x  /\  x  <_  ( `  A )
) )
46 elfz2 10211 . . . . . . . . . . . . . 14  |-  ( x  e.  ( 1 ... ( `  A )
)  <->  ( ( 1  e.  ZZ  /\  ( `  A )  e.  ZZ  /\  x  e.  ZZ )  /\  ( 1  <_  x  /\  x  <_  ( `  A ) ) ) )
4742, 45, 46sylanbrc 417 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  NN )  /\  x  <_  ( `  A )
)  ->  x  e.  ( 1 ... ( `  A ) ) )
4835, 47ffvelcdmd 5771 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  NN )  /\  x  <_  ( `  A )
)  ->  ( (
( k  e.  A  |->  B )  o.  f
) `  x )  e.  S )
4931, 48sseldd 3225 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  NN )  /\  x  <_  ( `  A )
)  ->  ( (
( k  e.  A  |->  B )  o.  f
) `  x )  e.  CC )
50 0cnd 8139 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  NN )  /\  -.  x  <_  ( `  A )
)  ->  0  e.  CC )
5139nnzd 9568 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  NN )  ->  x  e.  ZZ )
5213adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  NN )  ->  ( `  A )  e.  NN )
5352nnzd 9568 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  NN )  ->  ( `  A )  e.  ZZ )
54 zdcle 9523 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  ( `  A )  e.  ZZ )  -> DECID  x  <_  ( `  A
) )
5551, 53, 54syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  NN )  -> DECID  x  <_  ( `  A
) )
5649, 50, 55ifcldadc 3632 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  NN )  ->  if ( x  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  x ) ,  0 )  e.  CC )
5730, 56syldan 282 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  ( ZZ>= `  1 )
)  ->  if (
x  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  x ) ,  0 )  e.  CC )
58 breq1 4086 . . . . . . . . . . 11  |-  ( a  =  x  ->  (
a  <_  ( `  A
)  <->  x  <_  ( `  A
) ) )
59 fveq2 5627 . . . . . . . . . . 11  |-  ( a  =  x  ->  (
( ( k  e.  A  |->  B )  o.  f ) `  a
)  =  ( ( ( k  e.  A  |->  B )  o.  f
) `  x )
)
6058, 59ifbieq1d 3625 . . . . . . . . . 10  |-  ( a  =  x  ->  if ( a  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  a
) ,  0 )  =  if ( x  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 x ) ,  0 ) )
61 eqid 2229 . . . . . . . . . 10  |-  ( a  e.  NN  |->  if ( a  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  a ) ,  0 ) )  =  ( a  e.  NN  |->  if ( a  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 a ) ,  0 ) )
6260, 61fvmptg 5710 . . . . . . . . 9  |-  ( ( x  e.  NN  /\  if ( x  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  x
) ,  0 )  e.  CC )  -> 
( ( a  e.  NN  |->  if ( a  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 a ) ,  0 ) ) `  x )  =  if ( x  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  x
) ,  0 ) )
6330, 57, 62syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  ( ZZ>= `  1 )
)  ->  ( (
a  e.  NN  |->  if ( a  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  a
) ,  0 ) ) `  x )  =  if ( x  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 x ) ,  0 ) )
644adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  S  C_  CC )
6517, 64fssd 5486 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
( k  e.  A  |->  B ) : A --> CC )
6665ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  ( ZZ>= `  1 )
)  /\  x  <_  ( `  A ) )  -> 
( k  e.  A  |->  B ) : A --> CC )
6721ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  ( ZZ>= `  1 )
)  /\  x  <_  ( `  A ) )  -> 
f : ( 1 ... ( `  A
) ) --> A )
68 fco 5489 . . . . . . . . . . 11  |-  ( ( ( k  e.  A  |->  B ) : A --> CC  /\  f : ( 1 ... ( `  A
) ) --> A )  ->  ( ( k  e.  A  |->  B )  o.  f ) : ( 1 ... ( `  A ) ) --> CC )
6966, 67, 68syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  ( ZZ>= `  1 )
)  /\  x  <_  ( `  A ) )  -> 
( ( k  e.  A  |->  B )  o.  f ) : ( 1 ... ( `  A
) ) --> CC )
70 1zzd 9473 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  ( ZZ>= `  1 )
)  /\  x  <_  ( `  A ) )  -> 
1  e.  ZZ )
7113ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  ( ZZ>= `  1 )
)  /\  x  <_  ( `  A ) )  -> 
( `  A )  e.  NN )
7271nnzd 9568 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  ( ZZ>= `  1 )
)  /\  x  <_  ( `  A ) )  -> 
( `  A )  e.  ZZ )
73 eluzelz 9731 . . . . . . . . . . . . 13  |-  ( x  e.  ( ZZ>= `  1
)  ->  x  e.  ZZ )
7473ad2antlr 489 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  ( ZZ>= `  1 )
)  /\  x  <_  ( `  A ) )  ->  x  e.  ZZ )
7570, 72, 743jca 1201 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  ( ZZ>= `  1 )
)  /\  x  <_  ( `  A ) )  -> 
( 1  e.  ZZ  /\  ( `  A )  e.  ZZ  /\  x  e.  ZZ ) )
7629nnge1d 9153 . . . . . . . . . . . . 13  |-  ( x  e.  ( ZZ>= `  1
)  ->  1  <_  x )
7776ad2antlr 489 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  ( ZZ>= `  1 )
)  /\  x  <_  ( `  A ) )  -> 
1  <_  x )
78 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  ( ZZ>= `  1 )
)  /\  x  <_  ( `  A ) )  ->  x  <_  ( `  A )
)
7977, 78jca 306 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  ( ZZ>= `  1 )
)  /\  x  <_  ( `  A ) )  -> 
( 1  <_  x  /\  x  <_  ( `  A
) ) )
8075, 79, 46sylanbrc 417 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  ( ZZ>= `  1 )
)  /\  x  <_  ( `  A ) )  ->  x  e.  ( 1 ... ( `  A
) ) )
8169, 80ffvelcdmd 5771 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  ( ZZ>= `  1 )
)  /\  x  <_  ( `  A ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  x )  e.  CC )
82 0cnd 8139 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  ( ZZ>= `  1 )
)  /\  -.  x  <_  ( `  A )
)  ->  0  e.  CC )
8330, 55syldan 282 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  ( ZZ>= `  1 )
)  -> DECID  x  <_  ( `  A
) )
8481, 82, 83ifcldadc 3632 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  ( ZZ>= `  1 )
)  ->  if (
x  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  x ) ,  0 )  e.  CC )
8563, 84eqeltrd 2306 . . . . . . 7  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  ( ZZ>= `  1 )
)  ->  ( (
a  e.  NN  |->  if ( a  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  a
) ,  0 ) ) `  x )  e.  CC )
86 elfzle2 10224 . . . . . . . . . . 11  |-  ( x  e.  ( 1 ... ( `  A )
)  ->  x  <_  ( `  A ) )
8786adantl 277 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( `  A ) ) )  ->  x  <_  ( `  A ) )
8887iftrued 3609 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( `  A ) ) )  ->  if ( x  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 x ) ,  0 )  =  ( ( ( k  e.  A  |->  B )  o.  f ) `  x
) )
89 elfznn 10250 . . . . . . . . . . 11  |-  ( x  e.  ( 1 ... ( `  A )
)  ->  x  e.  NN )
9089anim2i 342 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( `  A ) ) )  ->  ( ( ph  /\  ( ( `  A
)  e.  NN  /\  f : ( 1 ... ( `  A )
)
-1-1-onto-> A ) )  /\  x  e.  NN )
)
9190, 87, 48syl2anc 411 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( `  A ) ) )  ->  ( ( ( k  e.  A  |->  B )  o.  f ) `
 x )  e.  S )
9288, 91eqeltrd 2306 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( `  A ) ) )  ->  if ( x  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 x ) ,  0 )  e.  S
)
9339, 56, 62syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  NN )  ->  (
( a  e.  NN  |->  if ( a  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  a
) ,  0 ) ) `  x )  =  if ( x  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 x ) ,  0 ) )
9493eleq1d 2298 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  NN )  ->  (
( ( a  e.  NN  |->  if ( a  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 a ) ,  0 ) ) `  x )  e.  S  <->  if ( x  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  x
) ,  0 )  e.  S ) )
9590, 94syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( `  A ) ) )  ->  ( ( ( a  e.  NN  |->  if ( a  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  a
) ,  0 ) ) `  x )  e.  S  <->  if (
x  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  x ) ,  0 )  e.  S ) )
9692, 95mpbird 167 . . . . . . 7  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( `  A ) ) )  ->  ( ( a  e.  NN  |->  if ( a  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  a ) ,  0 ) ) `
 x )  e.  S )
97 fsumcllem.2 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
9897adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
99 addcl 8124 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
10099adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  +  y )  e.  CC )
10127, 85, 96, 98, 64, 100seq3clss 10693 . . . . . 6  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
(  seq 1 (  +  ,  ( a  e.  NN  |->  if ( a  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 a ) ,  0 ) ) ) `
 ( `  A
) )  e.  S
)
10225, 101eqeltrd 2306 . . . . 5  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  sum_ k  e.  A  B  e.  S )
103102expr 375 . . . 4  |-  ( (
ph  /\  ( `  A
)  e.  NN )  ->  ( f : ( 1 ... ( `  A ) ) -1-1-onto-> A  ->  sum_ k  e.  A  B  e.  S ) )
104103exlimdv 1865 . . 3  |-  ( (
ph  /\  ( `  A
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A  ->  sum_ k  e.  A  B  e.  S
) )
105104expimpd 363 . 2  |-  ( ph  ->  ( ( ( `  A
)  e.  NN  /\  E. f  f : ( 1 ... ( `  A
) ) -1-1-onto-> A )  ->  sum_ k  e.  A  B  e.  S ) )
106 fsumcllem.3 . . 3  |-  ( ph  ->  A  e.  Fin )
107 fz1f1o 11886 . . 3  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( `  A )  e.  NN  /\  E. f 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) ) )
108106, 107syl 14 . 2  |-  ( ph  ->  ( A  =  (/)  \/  ( ( `  A
)  e.  NN  /\  E. f  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) ) )
1093, 105, 108mpjaod 723 1  |-  ( ph  -> 
sum_ k  e.  A  B  e.  S )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    /\ w3a 1002    = wceq 1395   E.wex 1538    e. wcel 2200    =/= wne 2400   A.wral 2508    C_ wss 3197   (/)c0 3491   ifcif 3602   class class class wbr 4083    |-> cmpt 4145    o. ccom 4723   -->wf 5314   -1-1-onto->wf1o 5317   ` cfv 5318  (class class class)co 6001   Fincfn 6887   CCcc 7997   0cc0 7999   1c1 8000    + caddc 8002    <_ cle 8182   NNcn 9110   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204    seqcseq 10669  ♯chash 10997   sum_csu 11864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-ihash 10998  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-sumdc 11865
This theorem is referenced by:  fsumcllem  11910  fsumrpcl  11915
  Copyright terms: Public domain W3C validator