Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpolemisumle Unicode version

Theorem trilpolemisumle 16406
Description: Lemma for trilpo 16411. An upper bound for the sum of the digits beyond a certain point. (Contributed by Jim Kingdon, 28-Aug-2023.)
Hypotheses
Ref Expression
trilpolemgt1.f  |-  ( ph  ->  F : NN --> { 0 ,  1 } )
trilpolemgt1.a  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)
trilpolemisumle.z  |-  Z  =  ( ZZ>= `  M )
trilpolemisumle.m  |-  ( ph  ->  M  e.  NN )
Assertion
Ref Expression
trilpolemisumle  |-  ( ph  -> 
sum_ i  e.  Z  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  <_  sum_ i  e.  Z  ( 1  / 
( 2 ^ i
) ) )
Distinct variable groups:    i, F    i, M    i, Z    ph, i
Allowed substitution hint:    A( i)

Proof of Theorem trilpolemisumle
Dummy variables  n  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trilpolemisumle.z . 2  |-  Z  =  ( ZZ>= `  M )
2 trilpolemisumle.m . . 3  |-  ( ph  ->  M  e.  NN )
32nnzd 9568 . 2  |-  ( ph  ->  M  e.  ZZ )
41eleq2i 2296 . . . . 5  |-  ( i  e.  Z  <->  i  e.  ( ZZ>= `  M )
)
54biimpi 120 . . . 4  |-  ( i  e.  Z  ->  i  e.  ( ZZ>= `  M )
)
6 eluznn 9795 . . . 4  |-  ( ( M  e.  NN  /\  i  e.  ( ZZ>= `  M ) )  -> 
i  e.  NN )
72, 5, 6syl2an 289 . . 3  |-  ( (
ph  /\  i  e.  Z )  ->  i  e.  NN )
8 eqid 2229 . . . 4  |-  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n ) ) )  =  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n
) ) )
9 oveq2 6009 . . . . . 6  |-  ( n  =  i  ->  (
2 ^ n )  =  ( 2 ^ i ) )
109oveq2d 6017 . . . . 5  |-  ( n  =  i  ->  (
1  /  ( 2 ^ n ) )  =  ( 1  / 
( 2 ^ i
) ) )
11 fveq2 5627 . . . . 5  |-  ( n  =  i  ->  ( F `  n )  =  ( F `  i ) )
1210, 11oveq12d 6019 . . . 4  |-  ( n  =  i  ->  (
( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) )  =  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) ) )
13 simpr 110 . . . 4  |-  ( (
ph  /\  i  e.  NN )  ->  i  e.  NN )
14 2rp 9854 . . . . . . . . 9  |-  2  e.  RR+
1514a1i 9 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN )  ->  2  e.  RR+ )
1613nnzd 9568 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN )  ->  i  e.  ZZ )
1715, 16rpexpcld 10919 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN )  ->  ( 2 ^ i )  e.  RR+ )
1817rpreccld 9903 . . . . . 6  |-  ( (
ph  /\  i  e.  NN )  ->  ( 1  /  ( 2 ^ i ) )  e.  RR+ )
1918rpred 9892 . . . . 5  |-  ( (
ph  /\  i  e.  NN )  ->  ( 1  /  ( 2 ^ i ) )  e.  RR )
20 trilpolemgt1.f . . . . . . 7  |-  ( ph  ->  F : NN --> { 0 ,  1 } )
21 0re 8146 . . . . . . . . 9  |-  0  e.  RR
22 1re 8145 . . . . . . . . 9  |-  1  e.  RR
23 prssi 3826 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  1  e.  RR )  ->  { 0 ,  1 }  C_  RR )
2421, 22, 23mp2an 426 . . . . . . . 8  |-  { 0 ,  1 }  C_  RR
2524a1i 9 . . . . . . 7  |-  ( ph  ->  { 0 ,  1 }  C_  RR )
2620, 25fssd 5486 . . . . . 6  |-  ( ph  ->  F : NN --> RR )
2726ffvelcdmda 5770 . . . . 5  |-  ( (
ph  /\  i  e.  NN )  ->  ( F `
 i )  e.  RR )
2819, 27remulcld 8177 . . . 4  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )  e.  RR )
298, 12, 13, 28fvmptd3 5728 . . 3  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) ) ) `  i )  =  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) ) )
307, 29syldan 282 . 2  |-  ( (
ph  /\  i  e.  Z )  ->  (
( n  e.  NN  |->  ( ( 1  / 
( 2 ^ n
) )  x.  ( F `  n )
) ) `  i
)  =  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) ) )
317, 28syldan 282 . 2  |-  ( (
ph  /\  i  e.  Z )  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  e.  RR )
32 eqid 2229 . . . 4  |-  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) )  =  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) )
3332, 10, 13, 18fvmptd3 5728 . . 3  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) `  i )  =  ( 1  / 
( 2 ^ i
) ) )
347, 33syldan 282 . 2  |-  ( (
ph  /\  i  e.  Z )  ->  (
( n  e.  NN  |->  ( 1  /  (
2 ^ n ) ) ) `  i
)  =  ( 1  /  ( 2 ^ i ) ) )
357, 19syldan 282 . 2  |-  ( (
ph  /\  i  e.  Z )  ->  (
1  /  ( 2 ^ i ) )  e.  RR )
36 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( F `  i
)  =  0 )
3736oveq2d 6017 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  =  ( ( 1  /  ( 2 ^ i ) )  x.  0 ) )
3818rpcnd 9894 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN )  ->  ( 1  /  ( 2 ^ i ) )  e.  CC )
3938adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( 1  /  (
2 ^ i ) )  e.  CC )
4039mul01d 8539 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  0 )  =  0 )
4137, 40eqtrd 2262 . . . . 5  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  =  0 )
4218adantr 276 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( 1  /  (
2 ^ i ) )  e.  RR+ )
4342rpge0d 9896 . . . . 5  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
0  <_  ( 1  /  ( 2 ^ i ) ) )
4441, 43eqbrtrd 4105 . . . 4  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  <_  ( 1  /  ( 2 ^ i ) ) )
45 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( F `  i
)  =  1 )
4645oveq2d 6017 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  =  ( ( 1  /  ( 2 ^ i ) )  x.  1 ) )
4738adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( 1  /  (
2 ^ i ) )  e.  CC )
4847mulridd 8163 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  1 )  =  ( 1  /  ( 2 ^ i ) ) )
4946, 48eqtrd 2262 . . . . 5  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  =  ( 1  /  ( 2 ^ i ) ) )
5019adantr 276 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( 1  /  (
2 ^ i ) )  e.  RR )
5150leidd 8661 . . . . 5  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( 1  /  (
2 ^ i ) )  <_  ( 1  /  ( 2 ^ i ) ) )
5249, 51eqbrtrd 4105 . . . 4  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  <_  ( 1  /  ( 2 ^ i ) ) )
5320ffvelcdmda 5770 . . . . 5  |-  ( (
ph  /\  i  e.  NN )  ->  ( F `
 i )  e. 
{ 0 ,  1 } )
54 elpri 3689 . . . . 5  |-  ( ( F `  i )  e.  { 0 ,  1 }  ->  (
( F `  i
)  =  0  \/  ( F `  i
)  =  1 ) )
5553, 54syl 14 . . . 4  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( F `  i )  =  0  \/  ( F `  i )  =  1 ) )
5644, 52, 55mpjaodan 803 . . 3  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )  <_ 
( 1  /  (
2 ^ i ) ) )
577, 56syldan 282 . 2  |-  ( (
ph  /\  i  e.  Z )  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  <_  ( 1  / 
( 2 ^ i
) ) )
5820, 8trilpolemclim 16404 . . 3  |-  ( ph  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n
) ) ) )  e.  dom  ~~>  )
59 nnuz 9758 . . . 4  |-  NN  =  ( ZZ>= `  1 )
6029, 28eqeltrd 2306 . . . . 5  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) ) ) `  i )  e.  RR )
6160recnd 8175 . . . 4  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) ) ) `  i )  e.  CC )
6259, 2, 61iserex 11850 . . 3  |-  ( ph  ->  (  seq 1 (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n ) ) ) )  e.  dom  ~~>  <->  seq M (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n ) ) ) )  e.  dom  ~~>  ) )
6358, 62mpbid 147 . 2  |-  ( ph  ->  seq M (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n
) ) ) )  e.  dom  ~~>  )
64 seqex 10671 . . . 4  |-  seq 1
(  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  e.  _V
65 rpreccl 9876 . . . . . . . 8  |-  ( 2  e.  RR+  ->  ( 1  /  2 )  e.  RR+ )
6614, 65ax-mp 5 . . . . . . 7  |-  ( 1  /  2 )  e.  RR+
6766a1i 9 . . . . . 6  |-  ( ph  ->  ( 1  /  2
)  e.  RR+ )
68 1zzd 9473 . . . . . 6  |-  ( ph  ->  1  e.  ZZ )
6967, 68rpexpcld 10919 . . . . 5  |-  ( ph  ->  ( ( 1  / 
2 ) ^ 1 )  e.  RR+ )
70 1mhlfehlf 9329 . . . . . . 7  |-  ( 1  -  ( 1  / 
2 ) )  =  ( 1  /  2
)
7170, 66eqeltri 2302 . . . . . 6  |-  ( 1  -  ( 1  / 
2 ) )  e.  RR+
7271a1i 9 . . . . 5  |-  ( ph  ->  ( 1  -  (
1  /  2 ) )  e.  RR+ )
7369, 72rpdivcld 9910 . . . 4  |-  ( ph  ->  ( ( ( 1  /  2 ) ^
1 )  /  (
1  -  ( 1  /  2 ) ) )  e.  RR+ )
74 halfcn 9325 . . . . . 6  |-  ( 1  /  2 )  e.  CC
7574a1i 9 . . . . 5  |-  ( ph  ->  ( 1  /  2
)  e.  CC )
76 halfge0 9327 . . . . . . . 8  |-  0  <_  ( 1  /  2
)
77 halfre 9324 . . . . . . . . 9  |-  ( 1  /  2 )  e.  RR
7877absidi 11637 . . . . . . . 8  |-  ( 0  <_  ( 1  / 
2 )  ->  ( abs `  ( 1  / 
2 ) )  =  ( 1  /  2
) )
7976, 78ax-mp 5 . . . . . . 7  |-  ( abs `  ( 1  /  2
) )  =  ( 1  /  2 )
80 halflt1 9328 . . . . . . 7  |-  ( 1  /  2 )  <  1
8179, 80eqbrtri 4104 . . . . . 6  |-  ( abs `  ( 1  /  2
) )  <  1
8281a1i 9 . . . . 5  |-  ( ph  ->  ( abs `  (
1  /  2 ) )  <  1 )
83 1nn0 9385 . . . . . 6  |-  1  e.  NN0
8483a1i 9 . . . . 5  |-  ( ph  ->  1  e.  NN0 )
85 oveq2 6009 . . . . . . . 8  |-  ( n  =  j  ->  (
2 ^ n )  =  ( 2 ^ j ) )
8685oveq2d 6017 . . . . . . 7  |-  ( n  =  j  ->  (
1  /  ( 2 ^ n ) )  =  ( 1  / 
( 2 ^ j
) ) )
87 elnnuz 9759 . . . . . . . . 9  |-  ( j  e.  NN  <->  j  e.  ( ZZ>= `  1 )
)
8887biimpri 133 . . . . . . . 8  |-  ( j  e.  ( ZZ>= `  1
)  ->  j  e.  NN )
8988adantl 277 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  j  e.  NN )
9014a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  2  e.  RR+ )
9189nnzd 9568 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  j  e.  ZZ )
9290, 91rpexpcld 10919 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( 2 ^ j )  e.  RR+ )
9392rpreccld 9903 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( 1  /  ( 2 ^ j ) )  e.  RR+ )
9432, 86, 89, 93fvmptd3 5728 . . . . . 6  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( (
n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) `  j )  =  ( 1  / 
( 2 ^ j
) ) )
95 2cnd 9183 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  2  e.  CC )
9690rpap0d 9898 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  2 #  0
)
9795, 96, 91exprecapd 10903 . . . . . 6  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( (
1  /  2 ) ^ j )  =  ( 1  /  (
2 ^ j ) ) )
9894, 97eqtr4d 2265 . . . . 5  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( (
n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) `  j )  =  ( ( 1  /  2 ) ^
j ) )
9975, 82, 84, 98geolim2 12023 . . . 4  |-  ( ph  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  ~~>  ( ( ( 1  /  2 ) ^
1 )  /  (
1  -  ( 1  /  2 ) ) ) )
100 breldmg 4929 . . . 4  |-  ( (  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  e.  _V  /\  (
( ( 1  / 
2 ) ^ 1 )  /  ( 1  -  ( 1  / 
2 ) ) )  e.  RR+  /\  seq 1
(  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  ~~>  ( ( ( 1  /  2
) ^ 1 )  /  ( 1  -  ( 1  /  2
) ) ) )  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  e.  dom  ~~>  )
10164, 73, 99, 100mp3an2i 1376 . . 3  |-  ( ph  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  e.  dom  ~~>  )
10233, 38eqeltrd 2306 . . . 4  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) `  i )  e.  CC )
10359, 2, 102iserex 11850 . . 3  |-  ( ph  ->  (  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  e.  dom  ~~>  <->  seq M (  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  e.  dom  ~~>  ) )
104101, 103mpbid 147 . 2  |-  ( ph  ->  seq M (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  e.  dom  ~~>  )
1051, 3, 30, 31, 34, 35, 57, 63, 104isumle 12006 1  |-  ( ph  -> 
sum_ i  e.  Z  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  <_  sum_ i  e.  Z  ( 1  / 
( 2 ^ i
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395    e. wcel 2200   _Vcvv 2799    C_ wss 3197   {cpr 3667   class class class wbr 4083    |-> cmpt 4145   dom cdm 4719   -->wf 5314   ` cfv 5318  (class class class)co 6001   CCcc 7997   RRcr 7998   0cc0 7999   1c1 8000    + caddc 8002    x. cmul 8004    < clt 8181    <_ cle 8182    - cmin 8317    / cdiv 8819   NNcn 9110   2c2 9161   NN0cn0 9369   ZZ>=cuz 9722   RR+crp 9849    seqcseq 10669   ^cexp 10760   abscabs 11508    ~~> cli 11789   sum_csu 11864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-ico 10090  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-ihash 10998  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-sumdc 11865
This theorem is referenced by:  trilpolemgt1  16407  trilpolemeq1  16408
  Copyright terms: Public domain W3C validator