| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > trilpolemisumle | Unicode version | ||
| Description: Lemma for trilpo 16019. An upper bound for the sum of the digits beyond a certain point. (Contributed by Jim Kingdon, 28-Aug-2023.) |
| Ref | Expression |
|---|---|
| trilpolemgt1.f |
|
| trilpolemgt1.a |
|
| trilpolemisumle.z |
|
| trilpolemisumle.m |
|
| Ref | Expression |
|---|---|
| trilpolemisumle |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trilpolemisumle.z |
. 2
| |
| 2 | trilpolemisumle.m |
. . 3
| |
| 3 | 2 | nnzd 9496 |
. 2
|
| 4 | 1 | eleq2i 2272 |
. . . . 5
|
| 5 | 4 | biimpi 120 |
. . . 4
|
| 6 | eluznn 9723 |
. . . 4
| |
| 7 | 2, 5, 6 | syl2an 289 |
. . 3
|
| 8 | eqid 2205 |
. . . 4
| |
| 9 | oveq2 5954 |
. . . . . 6
| |
| 10 | 9 | oveq2d 5962 |
. . . . 5
|
| 11 | fveq2 5578 |
. . . . 5
| |
| 12 | 10, 11 | oveq12d 5964 |
. . . 4
|
| 13 | simpr 110 |
. . . 4
| |
| 14 | 2rp 9782 |
. . . . . . . . 9
| |
| 15 | 14 | a1i 9 |
. . . . . . . 8
|
| 16 | 13 | nnzd 9496 |
. . . . . . . 8
|
| 17 | 15, 16 | rpexpcld 10844 |
. . . . . . 7
|
| 18 | 17 | rpreccld 9831 |
. . . . . 6
|
| 19 | 18 | rpred 9820 |
. . . . 5
|
| 20 | trilpolemgt1.f |
. . . . . . 7
| |
| 21 | 0re 8074 |
. . . . . . . . 9
| |
| 22 | 1re 8073 |
. . . . . . . . 9
| |
| 23 | prssi 3791 |
. . . . . . . . 9
| |
| 24 | 21, 22, 23 | mp2an 426 |
. . . . . . . 8
|
| 25 | 24 | a1i 9 |
. . . . . . 7
|
| 26 | 20, 25 | fssd 5440 |
. . . . . 6
|
| 27 | 26 | ffvelcdmda 5717 |
. . . . 5
|
| 28 | 19, 27 | remulcld 8105 |
. . . 4
|
| 29 | 8, 12, 13, 28 | fvmptd3 5675 |
. . 3
|
| 30 | 7, 29 | syldan 282 |
. 2
|
| 31 | 7, 28 | syldan 282 |
. 2
|
| 32 | eqid 2205 |
. . . 4
| |
| 33 | 32, 10, 13, 18 | fvmptd3 5675 |
. . 3
|
| 34 | 7, 33 | syldan 282 |
. 2
|
| 35 | 7, 19 | syldan 282 |
. 2
|
| 36 | simpr 110 |
. . . . . . 7
| |
| 37 | 36 | oveq2d 5962 |
. . . . . 6
|
| 38 | 18 | rpcnd 9822 |
. . . . . . . 8
|
| 39 | 38 | adantr 276 |
. . . . . . 7
|
| 40 | 39 | mul01d 8467 |
. . . . . 6
|
| 41 | 37, 40 | eqtrd 2238 |
. . . . 5
|
| 42 | 18 | adantr 276 |
. . . . . 6
|
| 43 | 42 | rpge0d 9824 |
. . . . 5
|
| 44 | 41, 43 | eqbrtrd 4067 |
. . . 4
|
| 45 | simpr 110 |
. . . . . . 7
| |
| 46 | 45 | oveq2d 5962 |
. . . . . 6
|
| 47 | 38 | adantr 276 |
. . . . . . 7
|
| 48 | 47 | mulridd 8091 |
. . . . . 6
|
| 49 | 46, 48 | eqtrd 2238 |
. . . . 5
|
| 50 | 19 | adantr 276 |
. . . . . 6
|
| 51 | 50 | leidd 8589 |
. . . . 5
|
| 52 | 49, 51 | eqbrtrd 4067 |
. . . 4
|
| 53 | 20 | ffvelcdmda 5717 |
. . . . 5
|
| 54 | elpri 3656 |
. . . . 5
| |
| 55 | 53, 54 | syl 14 |
. . . 4
|
| 56 | 44, 52, 55 | mpjaodan 800 |
. . 3
|
| 57 | 7, 56 | syldan 282 |
. 2
|
| 58 | 20, 8 | trilpolemclim 16012 |
. . 3
|
| 59 | nnuz 9686 |
. . . 4
| |
| 60 | 29, 28 | eqeltrd 2282 |
. . . . 5
|
| 61 | 60 | recnd 8103 |
. . . 4
|
| 62 | 59, 2, 61 | iserex 11683 |
. . 3
|
| 63 | 58, 62 | mpbid 147 |
. 2
|
| 64 | seqex 10596 |
. . . 4
| |
| 65 | rpreccl 9804 |
. . . . . . . 8
| |
| 66 | 14, 65 | ax-mp 5 |
. . . . . . 7
|
| 67 | 66 | a1i 9 |
. . . . . 6
|
| 68 | 1zzd 9401 |
. . . . . 6
| |
| 69 | 67, 68 | rpexpcld 10844 |
. . . . 5
|
| 70 | 1mhlfehlf 9257 |
. . . . . . 7
| |
| 71 | 70, 66 | eqeltri 2278 |
. . . . . 6
|
| 72 | 71 | a1i 9 |
. . . . 5
|
| 73 | 69, 72 | rpdivcld 9838 |
. . . 4
|
| 74 | halfcn 9253 |
. . . . . 6
| |
| 75 | 74 | a1i 9 |
. . . . 5
|
| 76 | halfge0 9255 |
. . . . . . . 8
| |
| 77 | halfre 9252 |
. . . . . . . . 9
| |
| 78 | 77 | absidi 11470 |
. . . . . . . 8
|
| 79 | 76, 78 | ax-mp 5 |
. . . . . . 7
|
| 80 | halflt1 9256 |
. . . . . . 7
| |
| 81 | 79, 80 | eqbrtri 4066 |
. . . . . 6
|
| 82 | 81 | a1i 9 |
. . . . 5
|
| 83 | 1nn0 9313 |
. . . . . 6
| |
| 84 | 83 | a1i 9 |
. . . . 5
|
| 85 | oveq2 5954 |
. . . . . . . 8
| |
| 86 | 85 | oveq2d 5962 |
. . . . . . 7
|
| 87 | elnnuz 9687 |
. . . . . . . . 9
| |
| 88 | 87 | biimpri 133 |
. . . . . . . 8
|
| 89 | 88 | adantl 277 |
. . . . . . 7
|
| 90 | 14 | a1i 9 |
. . . . . . . . 9
|
| 91 | 89 | nnzd 9496 |
. . . . . . . . 9
|
| 92 | 90, 91 | rpexpcld 10844 |
. . . . . . . 8
|
| 93 | 92 | rpreccld 9831 |
. . . . . . 7
|
| 94 | 32, 86, 89, 93 | fvmptd3 5675 |
. . . . . 6
|
| 95 | 2cnd 9111 |
. . . . . . 7
| |
| 96 | 90 | rpap0d 9826 |
. . . . . . 7
|
| 97 | 95, 96, 91 | exprecapd 10828 |
. . . . . 6
|
| 98 | 94, 97 | eqtr4d 2241 |
. . . . 5
|
| 99 | 75, 82, 84, 98 | geolim2 11856 |
. . . 4
|
| 100 | breldmg 4885 |
. . . 4
| |
| 101 | 64, 73, 99, 100 | mp3an2i 1355 |
. . 3
|
| 102 | 33, 38 | eqeltrd 2282 |
. . . 4
|
| 103 | 59, 2, 102 | iserex 11683 |
. . 3
|
| 104 | 101, 103 | mpbid 147 |
. 2
|
| 105 | 1, 3, 30, 31, 34, 35, 57, 63, 104 | isumle 11839 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 ax-arch 8046 ax-caucvg 8047 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-po 4344 df-iso 4345 df-iord 4414 df-on 4416 df-ilim 4417 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-isom 5281 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-irdg 6458 df-frec 6479 df-1o 6504 df-oadd 6508 df-er 6622 df-en 6830 df-dom 6831 df-fin 6832 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-n0 9298 df-z 9375 df-uz 9651 df-q 9743 df-rp 9778 df-ico 10018 df-fz 10133 df-fzo 10267 df-seqfrec 10595 df-exp 10686 df-ihash 10923 df-cj 11186 df-re 11187 df-im 11188 df-rsqrt 11342 df-abs 11343 df-clim 11623 df-sumdc 11698 |
| This theorem is referenced by: trilpolemgt1 16015 trilpolemeq1 16016 |
| Copyright terms: Public domain | W3C validator |