| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > trilpolemisumle | Unicode version | ||
| Description: Lemma for trilpo 16184. An upper bound for the sum of the digits beyond a certain point. (Contributed by Jim Kingdon, 28-Aug-2023.) |
| Ref | Expression |
|---|---|
| trilpolemgt1.f |
|
| trilpolemgt1.a |
|
| trilpolemisumle.z |
|
| trilpolemisumle.m |
|
| Ref | Expression |
|---|---|
| trilpolemisumle |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trilpolemisumle.z |
. 2
| |
| 2 | trilpolemisumle.m |
. . 3
| |
| 3 | 2 | nnzd 9529 |
. 2
|
| 4 | 1 | eleq2i 2274 |
. . . . 5
|
| 5 | 4 | biimpi 120 |
. . . 4
|
| 6 | eluznn 9756 |
. . . 4
| |
| 7 | 2, 5, 6 | syl2an 289 |
. . 3
|
| 8 | eqid 2207 |
. . . 4
| |
| 9 | oveq2 5975 |
. . . . . 6
| |
| 10 | 9 | oveq2d 5983 |
. . . . 5
|
| 11 | fveq2 5599 |
. . . . 5
| |
| 12 | 10, 11 | oveq12d 5985 |
. . . 4
|
| 13 | simpr 110 |
. . . 4
| |
| 14 | 2rp 9815 |
. . . . . . . . 9
| |
| 15 | 14 | a1i 9 |
. . . . . . . 8
|
| 16 | 13 | nnzd 9529 |
. . . . . . . 8
|
| 17 | 15, 16 | rpexpcld 10879 |
. . . . . . 7
|
| 18 | 17 | rpreccld 9864 |
. . . . . 6
|
| 19 | 18 | rpred 9853 |
. . . . 5
|
| 20 | trilpolemgt1.f |
. . . . . . 7
| |
| 21 | 0re 8107 |
. . . . . . . . 9
| |
| 22 | 1re 8106 |
. . . . . . . . 9
| |
| 23 | prssi 3802 |
. . . . . . . . 9
| |
| 24 | 21, 22, 23 | mp2an 426 |
. . . . . . . 8
|
| 25 | 24 | a1i 9 |
. . . . . . 7
|
| 26 | 20, 25 | fssd 5458 |
. . . . . 6
|
| 27 | 26 | ffvelcdmda 5738 |
. . . . 5
|
| 28 | 19, 27 | remulcld 8138 |
. . . 4
|
| 29 | 8, 12, 13, 28 | fvmptd3 5696 |
. . 3
|
| 30 | 7, 29 | syldan 282 |
. 2
|
| 31 | 7, 28 | syldan 282 |
. 2
|
| 32 | eqid 2207 |
. . . 4
| |
| 33 | 32, 10, 13, 18 | fvmptd3 5696 |
. . 3
|
| 34 | 7, 33 | syldan 282 |
. 2
|
| 35 | 7, 19 | syldan 282 |
. 2
|
| 36 | simpr 110 |
. . . . . . 7
| |
| 37 | 36 | oveq2d 5983 |
. . . . . 6
|
| 38 | 18 | rpcnd 9855 |
. . . . . . . 8
|
| 39 | 38 | adantr 276 |
. . . . . . 7
|
| 40 | 39 | mul01d 8500 |
. . . . . 6
|
| 41 | 37, 40 | eqtrd 2240 |
. . . . 5
|
| 42 | 18 | adantr 276 |
. . . . . 6
|
| 43 | 42 | rpge0d 9857 |
. . . . 5
|
| 44 | 41, 43 | eqbrtrd 4081 |
. . . 4
|
| 45 | simpr 110 |
. . . . . . 7
| |
| 46 | 45 | oveq2d 5983 |
. . . . . 6
|
| 47 | 38 | adantr 276 |
. . . . . . 7
|
| 48 | 47 | mulridd 8124 |
. . . . . 6
|
| 49 | 46, 48 | eqtrd 2240 |
. . . . 5
|
| 50 | 19 | adantr 276 |
. . . . . 6
|
| 51 | 50 | leidd 8622 |
. . . . 5
|
| 52 | 49, 51 | eqbrtrd 4081 |
. . . 4
|
| 53 | 20 | ffvelcdmda 5738 |
. . . . 5
|
| 54 | elpri 3666 |
. . . . 5
| |
| 55 | 53, 54 | syl 14 |
. . . 4
|
| 56 | 44, 52, 55 | mpjaodan 800 |
. . 3
|
| 57 | 7, 56 | syldan 282 |
. 2
|
| 58 | 20, 8 | trilpolemclim 16177 |
. . 3
|
| 59 | nnuz 9719 |
. . . 4
| |
| 60 | 29, 28 | eqeltrd 2284 |
. . . . 5
|
| 61 | 60 | recnd 8136 |
. . . 4
|
| 62 | 59, 2, 61 | iserex 11765 |
. . 3
|
| 63 | 58, 62 | mpbid 147 |
. 2
|
| 64 | seqex 10631 |
. . . 4
| |
| 65 | rpreccl 9837 |
. . . . . . . 8
| |
| 66 | 14, 65 | ax-mp 5 |
. . . . . . 7
|
| 67 | 66 | a1i 9 |
. . . . . 6
|
| 68 | 1zzd 9434 |
. . . . . 6
| |
| 69 | 67, 68 | rpexpcld 10879 |
. . . . 5
|
| 70 | 1mhlfehlf 9290 |
. . . . . . 7
| |
| 71 | 70, 66 | eqeltri 2280 |
. . . . . 6
|
| 72 | 71 | a1i 9 |
. . . . 5
|
| 73 | 69, 72 | rpdivcld 9871 |
. . . 4
|
| 74 | halfcn 9286 |
. . . . . 6
| |
| 75 | 74 | a1i 9 |
. . . . 5
|
| 76 | halfge0 9288 |
. . . . . . . 8
| |
| 77 | halfre 9285 |
. . . . . . . . 9
| |
| 78 | 77 | absidi 11552 |
. . . . . . . 8
|
| 79 | 76, 78 | ax-mp 5 |
. . . . . . 7
|
| 80 | halflt1 9289 |
. . . . . . 7
| |
| 81 | 79, 80 | eqbrtri 4080 |
. . . . . 6
|
| 82 | 81 | a1i 9 |
. . . . 5
|
| 83 | 1nn0 9346 |
. . . . . 6
| |
| 84 | 83 | a1i 9 |
. . . . 5
|
| 85 | oveq2 5975 |
. . . . . . . 8
| |
| 86 | 85 | oveq2d 5983 |
. . . . . . 7
|
| 87 | elnnuz 9720 |
. . . . . . . . 9
| |
| 88 | 87 | biimpri 133 |
. . . . . . . 8
|
| 89 | 88 | adantl 277 |
. . . . . . 7
|
| 90 | 14 | a1i 9 |
. . . . . . . . 9
|
| 91 | 89 | nnzd 9529 |
. . . . . . . . 9
|
| 92 | 90, 91 | rpexpcld 10879 |
. . . . . . . 8
|
| 93 | 92 | rpreccld 9864 |
. . . . . . 7
|
| 94 | 32, 86, 89, 93 | fvmptd3 5696 |
. . . . . 6
|
| 95 | 2cnd 9144 |
. . . . . . 7
| |
| 96 | 90 | rpap0d 9859 |
. . . . . . 7
|
| 97 | 95, 96, 91 | exprecapd 10863 |
. . . . . 6
|
| 98 | 94, 97 | eqtr4d 2243 |
. . . . 5
|
| 99 | 75, 82, 84, 98 | geolim2 11938 |
. . . 4
|
| 100 | breldmg 4903 |
. . . 4
| |
| 101 | 64, 73, 99, 100 | mp3an2i 1355 |
. . 3
|
| 102 | 33, 38 | eqeltrd 2284 |
. . . 4
|
| 103 | 59, 2, 102 | iserex 11765 |
. . 3
|
| 104 | 101, 103 | mpbid 147 |
. 2
|
| 105 | 1, 3, 30, 31, 34, 35, 57, 63, 104 | isumle 11921 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-oadd 6529 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-ico 10051 df-fz 10166 df-fzo 10300 df-seqfrec 10630 df-exp 10721 df-ihash 10958 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-sumdc 11780 |
| This theorem is referenced by: trilpolemgt1 16180 trilpolemeq1 16181 |
| Copyright terms: Public domain | W3C validator |