Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpolemisumle Unicode version

Theorem trilpolemisumle 13917
Description: Lemma for trilpo 13922. An upper bound for the sum of the digits beyond a certain point. (Contributed by Jim Kingdon, 28-Aug-2023.)
Hypotheses
Ref Expression
trilpolemgt1.f  |-  ( ph  ->  F : NN --> { 0 ,  1 } )
trilpolemgt1.a  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)
trilpolemisumle.z  |-  Z  =  ( ZZ>= `  M )
trilpolemisumle.m  |-  ( ph  ->  M  e.  NN )
Assertion
Ref Expression
trilpolemisumle  |-  ( ph  -> 
sum_ i  e.  Z  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  <_  sum_ i  e.  Z  ( 1  / 
( 2 ^ i
) ) )
Distinct variable groups:    i, F    i, M    i, Z    ph, i
Allowed substitution hint:    A( i)

Proof of Theorem trilpolemisumle
Dummy variables  n  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trilpolemisumle.z . 2  |-  Z  =  ( ZZ>= `  M )
2 trilpolemisumle.m . . 3  |-  ( ph  ->  M  e.  NN )
32nnzd 9312 . 2  |-  ( ph  ->  M  e.  ZZ )
41eleq2i 2233 . . . . 5  |-  ( i  e.  Z  <->  i  e.  ( ZZ>= `  M )
)
54biimpi 119 . . . 4  |-  ( i  e.  Z  ->  i  e.  ( ZZ>= `  M )
)
6 eluznn 9538 . . . 4  |-  ( ( M  e.  NN  /\  i  e.  ( ZZ>= `  M ) )  -> 
i  e.  NN )
72, 5, 6syl2an 287 . . 3  |-  ( (
ph  /\  i  e.  Z )  ->  i  e.  NN )
8 eqid 2165 . . . 4  |-  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n ) ) )  =  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n
) ) )
9 oveq2 5850 . . . . . 6  |-  ( n  =  i  ->  (
2 ^ n )  =  ( 2 ^ i ) )
109oveq2d 5858 . . . . 5  |-  ( n  =  i  ->  (
1  /  ( 2 ^ n ) )  =  ( 1  / 
( 2 ^ i
) ) )
11 fveq2 5486 . . . . 5  |-  ( n  =  i  ->  ( F `  n )  =  ( F `  i ) )
1210, 11oveq12d 5860 . . . 4  |-  ( n  =  i  ->  (
( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) )  =  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) ) )
13 simpr 109 . . . 4  |-  ( (
ph  /\  i  e.  NN )  ->  i  e.  NN )
14 2rp 9594 . . . . . . . . 9  |-  2  e.  RR+
1514a1i 9 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN )  ->  2  e.  RR+ )
1613nnzd 9312 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN )  ->  i  e.  ZZ )
1715, 16rpexpcld 10612 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN )  ->  ( 2 ^ i )  e.  RR+ )
1817rpreccld 9643 . . . . . 6  |-  ( (
ph  /\  i  e.  NN )  ->  ( 1  /  ( 2 ^ i ) )  e.  RR+ )
1918rpred 9632 . . . . 5  |-  ( (
ph  /\  i  e.  NN )  ->  ( 1  /  ( 2 ^ i ) )  e.  RR )
20 trilpolemgt1.f . . . . . . 7  |-  ( ph  ->  F : NN --> { 0 ,  1 } )
21 0re 7899 . . . . . . . . 9  |-  0  e.  RR
22 1re 7898 . . . . . . . . 9  |-  1  e.  RR
23 prssi 3731 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  1  e.  RR )  ->  { 0 ,  1 }  C_  RR )
2421, 22, 23mp2an 423 . . . . . . . 8  |-  { 0 ,  1 }  C_  RR
2524a1i 9 . . . . . . 7  |-  ( ph  ->  { 0 ,  1 }  C_  RR )
2620, 25fssd 5350 . . . . . 6  |-  ( ph  ->  F : NN --> RR )
2726ffvelrnda 5620 . . . . 5  |-  ( (
ph  /\  i  e.  NN )  ->  ( F `
 i )  e.  RR )
2819, 27remulcld 7929 . . . 4  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )  e.  RR )
298, 12, 13, 28fvmptd3 5579 . . 3  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) ) ) `  i )  =  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) ) )
307, 29syldan 280 . 2  |-  ( (
ph  /\  i  e.  Z )  ->  (
( n  e.  NN  |->  ( ( 1  / 
( 2 ^ n
) )  x.  ( F `  n )
) ) `  i
)  =  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) ) )
317, 28syldan 280 . 2  |-  ( (
ph  /\  i  e.  Z )  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  e.  RR )
32 eqid 2165 . . . 4  |-  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) )  =  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) )
3332, 10, 13, 18fvmptd3 5579 . . 3  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) `  i )  =  ( 1  / 
( 2 ^ i
) ) )
347, 33syldan 280 . 2  |-  ( (
ph  /\  i  e.  Z )  ->  (
( n  e.  NN  |->  ( 1  /  (
2 ^ n ) ) ) `  i
)  =  ( 1  /  ( 2 ^ i ) ) )
357, 19syldan 280 . 2  |-  ( (
ph  /\  i  e.  Z )  ->  (
1  /  ( 2 ^ i ) )  e.  RR )
36 simpr 109 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( F `  i
)  =  0 )
3736oveq2d 5858 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  =  ( ( 1  /  ( 2 ^ i ) )  x.  0 ) )
3818rpcnd 9634 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN )  ->  ( 1  /  ( 2 ^ i ) )  e.  CC )
3938adantr 274 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( 1  /  (
2 ^ i ) )  e.  CC )
4039mul01d 8291 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  0 )  =  0 )
4137, 40eqtrd 2198 . . . . 5  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  =  0 )
4218adantr 274 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( 1  /  (
2 ^ i ) )  e.  RR+ )
4342rpge0d 9636 . . . . 5  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
0  <_  ( 1  /  ( 2 ^ i ) ) )
4441, 43eqbrtrd 4004 . . . 4  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  <_  ( 1  /  ( 2 ^ i ) ) )
45 simpr 109 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( F `  i
)  =  1 )
4645oveq2d 5858 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  =  ( ( 1  /  ( 2 ^ i ) )  x.  1 ) )
4738adantr 274 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( 1  /  (
2 ^ i ) )  e.  CC )
4847mulid1d 7916 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  1 )  =  ( 1  /  ( 2 ^ i ) ) )
4946, 48eqtrd 2198 . . . . 5  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  =  ( 1  /  ( 2 ^ i ) ) )
5019adantr 274 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( 1  /  (
2 ^ i ) )  e.  RR )
5150leidd 8412 . . . . 5  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( 1  /  (
2 ^ i ) )  <_  ( 1  /  ( 2 ^ i ) ) )
5249, 51eqbrtrd 4004 . . . 4  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  <_  ( 1  /  ( 2 ^ i ) ) )
5320ffvelrnda 5620 . . . . 5  |-  ( (
ph  /\  i  e.  NN )  ->  ( F `
 i )  e. 
{ 0 ,  1 } )
54 elpri 3599 . . . . 5  |-  ( ( F `  i )  e.  { 0 ,  1 }  ->  (
( F `  i
)  =  0  \/  ( F `  i
)  =  1 ) )
5553, 54syl 14 . . . 4  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( F `  i )  =  0  \/  ( F `  i )  =  1 ) )
5644, 52, 55mpjaodan 788 . . 3  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )  <_ 
( 1  /  (
2 ^ i ) ) )
577, 56syldan 280 . 2  |-  ( (
ph  /\  i  e.  Z )  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  <_  ( 1  / 
( 2 ^ i
) ) )
5820, 8trilpolemclim 13915 . . 3  |-  ( ph  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n
) ) ) )  e.  dom  ~~>  )
59 nnuz 9501 . . . 4  |-  NN  =  ( ZZ>= `  1 )
6029, 28eqeltrd 2243 . . . . 5  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) ) ) `  i )  e.  RR )
6160recnd 7927 . . . 4  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) ) ) `  i )  e.  CC )
6259, 2, 61iserex 11280 . . 3  |-  ( ph  ->  (  seq 1 (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n ) ) ) )  e.  dom  ~~>  <->  seq M (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n ) ) ) )  e.  dom  ~~>  ) )
6358, 62mpbid 146 . 2  |-  ( ph  ->  seq M (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n
) ) ) )  e.  dom  ~~>  )
64 seqex 10382 . . . 4  |-  seq 1
(  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  e.  _V
65 rpreccl 9616 . . . . . . . 8  |-  ( 2  e.  RR+  ->  ( 1  /  2 )  e.  RR+ )
6614, 65ax-mp 5 . . . . . . 7  |-  ( 1  /  2 )  e.  RR+
6766a1i 9 . . . . . 6  |-  ( ph  ->  ( 1  /  2
)  e.  RR+ )
68 1zzd 9218 . . . . . 6  |-  ( ph  ->  1  e.  ZZ )
6967, 68rpexpcld 10612 . . . . 5  |-  ( ph  ->  ( ( 1  / 
2 ) ^ 1 )  e.  RR+ )
70 1mhlfehlf 9075 . . . . . . 7  |-  ( 1  -  ( 1  / 
2 ) )  =  ( 1  /  2
)
7170, 66eqeltri 2239 . . . . . 6  |-  ( 1  -  ( 1  / 
2 ) )  e.  RR+
7271a1i 9 . . . . 5  |-  ( ph  ->  ( 1  -  (
1  /  2 ) )  e.  RR+ )
7369, 72rpdivcld 9650 . . . 4  |-  ( ph  ->  ( ( ( 1  /  2 ) ^
1 )  /  (
1  -  ( 1  /  2 ) ) )  e.  RR+ )
74 halfcn 9071 . . . . . 6  |-  ( 1  /  2 )  e.  CC
7574a1i 9 . . . . 5  |-  ( ph  ->  ( 1  /  2
)  e.  CC )
76 halfge0 9073 . . . . . . . 8  |-  0  <_  ( 1  /  2
)
77 halfre 9070 . . . . . . . . 9  |-  ( 1  /  2 )  e.  RR
7877absidi 11068 . . . . . . . 8  |-  ( 0  <_  ( 1  / 
2 )  ->  ( abs `  ( 1  / 
2 ) )  =  ( 1  /  2
) )
7976, 78ax-mp 5 . . . . . . 7  |-  ( abs `  ( 1  /  2
) )  =  ( 1  /  2 )
80 halflt1 9074 . . . . . . 7  |-  ( 1  /  2 )  <  1
8179, 80eqbrtri 4003 . . . . . 6  |-  ( abs `  ( 1  /  2
) )  <  1
8281a1i 9 . . . . 5  |-  ( ph  ->  ( abs `  (
1  /  2 ) )  <  1 )
83 1nn0 9130 . . . . . 6  |-  1  e.  NN0
8483a1i 9 . . . . 5  |-  ( ph  ->  1  e.  NN0 )
85 oveq2 5850 . . . . . . . 8  |-  ( n  =  j  ->  (
2 ^ n )  =  ( 2 ^ j ) )
8685oveq2d 5858 . . . . . . 7  |-  ( n  =  j  ->  (
1  /  ( 2 ^ n ) )  =  ( 1  / 
( 2 ^ j
) ) )
87 elnnuz 9502 . . . . . . . . 9  |-  ( j  e.  NN  <->  j  e.  ( ZZ>= `  1 )
)
8887biimpri 132 . . . . . . . 8  |-  ( j  e.  ( ZZ>= `  1
)  ->  j  e.  NN )
8988adantl 275 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  j  e.  NN )
9014a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  2  e.  RR+ )
9189nnzd 9312 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  j  e.  ZZ )
9290, 91rpexpcld 10612 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( 2 ^ j )  e.  RR+ )
9392rpreccld 9643 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( 1  /  ( 2 ^ j ) )  e.  RR+ )
9432, 86, 89, 93fvmptd3 5579 . . . . . 6  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( (
n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) `  j )  =  ( 1  / 
( 2 ^ j
) ) )
95 2cnd 8930 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  2  e.  CC )
9690rpap0d 9638 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  2 #  0
)
9795, 96, 91exprecapd 10596 . . . . . 6  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( (
1  /  2 ) ^ j )  =  ( 1  /  (
2 ^ j ) ) )
9894, 97eqtr4d 2201 . . . . 5  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( (
n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) `  j )  =  ( ( 1  /  2 ) ^
j ) )
9975, 82, 84, 98geolim2 11453 . . . 4  |-  ( ph  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  ~~>  ( ( ( 1  /  2 ) ^
1 )  /  (
1  -  ( 1  /  2 ) ) ) )
100 breldmg 4810 . . . 4  |-  ( (  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  e.  _V  /\  (
( ( 1  / 
2 ) ^ 1 )  /  ( 1  -  ( 1  / 
2 ) ) )  e.  RR+  /\  seq 1
(  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  ~~>  ( ( ( 1  /  2
) ^ 1 )  /  ( 1  -  ( 1  /  2
) ) ) )  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  e.  dom  ~~>  )
10164, 73, 99, 100mp3an2i 1332 . . 3  |-  ( ph  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  e.  dom  ~~>  )
10233, 38eqeltrd 2243 . . . 4  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) `  i )  e.  CC )
10359, 2, 102iserex 11280 . . 3  |-  ( ph  ->  (  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  e.  dom  ~~>  <->  seq M (  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  e.  dom  ~~>  ) )
104101, 103mpbid 146 . 2  |-  ( ph  ->  seq M (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  e.  dom  ~~>  )
1051, 3, 30, 31, 34, 35, 57, 63, 104isumle 11436 1  |-  ( ph  -> 
sum_ i  e.  Z  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  <_  sum_ i  e.  Z  ( 1  / 
( 2 ^ i
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1343    e. wcel 2136   _Vcvv 2726    C_ wss 3116   {cpr 3577   class class class wbr 3982    |-> cmpt 4043   dom cdm 4604   -->wf 5184   ` cfv 5188  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758    < clt 7933    <_ cle 7934    - cmin 8069    / cdiv 8568   NNcn 8857   2c2 8908   NN0cn0 9114   ZZ>=cuz 9466   RR+crp 9589    seqcseq 10380   ^cexp 10454   abscabs 10939    ~~> cli 11219   sum_csu 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-ico 9830  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by:  trilpolemgt1  13918  trilpolemeq1  13919
  Copyright terms: Public domain W3C validator