Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpolemisumle Unicode version

Theorem trilpolemisumle 16179
Description: Lemma for trilpo 16184. An upper bound for the sum of the digits beyond a certain point. (Contributed by Jim Kingdon, 28-Aug-2023.)
Hypotheses
Ref Expression
trilpolemgt1.f  |-  ( ph  ->  F : NN --> { 0 ,  1 } )
trilpolemgt1.a  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)
trilpolemisumle.z  |-  Z  =  ( ZZ>= `  M )
trilpolemisumle.m  |-  ( ph  ->  M  e.  NN )
Assertion
Ref Expression
trilpolemisumle  |-  ( ph  -> 
sum_ i  e.  Z  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  <_  sum_ i  e.  Z  ( 1  / 
( 2 ^ i
) ) )
Distinct variable groups:    i, F    i, M    i, Z    ph, i
Allowed substitution hint:    A( i)

Proof of Theorem trilpolemisumle
Dummy variables  n  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trilpolemisumle.z . 2  |-  Z  =  ( ZZ>= `  M )
2 trilpolemisumle.m . . 3  |-  ( ph  ->  M  e.  NN )
32nnzd 9529 . 2  |-  ( ph  ->  M  e.  ZZ )
41eleq2i 2274 . . . . 5  |-  ( i  e.  Z  <->  i  e.  ( ZZ>= `  M )
)
54biimpi 120 . . . 4  |-  ( i  e.  Z  ->  i  e.  ( ZZ>= `  M )
)
6 eluznn 9756 . . . 4  |-  ( ( M  e.  NN  /\  i  e.  ( ZZ>= `  M ) )  -> 
i  e.  NN )
72, 5, 6syl2an 289 . . 3  |-  ( (
ph  /\  i  e.  Z )  ->  i  e.  NN )
8 eqid 2207 . . . 4  |-  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n ) ) )  =  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n
) ) )
9 oveq2 5975 . . . . . 6  |-  ( n  =  i  ->  (
2 ^ n )  =  ( 2 ^ i ) )
109oveq2d 5983 . . . . 5  |-  ( n  =  i  ->  (
1  /  ( 2 ^ n ) )  =  ( 1  / 
( 2 ^ i
) ) )
11 fveq2 5599 . . . . 5  |-  ( n  =  i  ->  ( F `  n )  =  ( F `  i ) )
1210, 11oveq12d 5985 . . . 4  |-  ( n  =  i  ->  (
( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) )  =  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) ) )
13 simpr 110 . . . 4  |-  ( (
ph  /\  i  e.  NN )  ->  i  e.  NN )
14 2rp 9815 . . . . . . . . 9  |-  2  e.  RR+
1514a1i 9 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN )  ->  2  e.  RR+ )
1613nnzd 9529 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN )  ->  i  e.  ZZ )
1715, 16rpexpcld 10879 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN )  ->  ( 2 ^ i )  e.  RR+ )
1817rpreccld 9864 . . . . . 6  |-  ( (
ph  /\  i  e.  NN )  ->  ( 1  /  ( 2 ^ i ) )  e.  RR+ )
1918rpred 9853 . . . . 5  |-  ( (
ph  /\  i  e.  NN )  ->  ( 1  /  ( 2 ^ i ) )  e.  RR )
20 trilpolemgt1.f . . . . . . 7  |-  ( ph  ->  F : NN --> { 0 ,  1 } )
21 0re 8107 . . . . . . . . 9  |-  0  e.  RR
22 1re 8106 . . . . . . . . 9  |-  1  e.  RR
23 prssi 3802 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  1  e.  RR )  ->  { 0 ,  1 }  C_  RR )
2421, 22, 23mp2an 426 . . . . . . . 8  |-  { 0 ,  1 }  C_  RR
2524a1i 9 . . . . . . 7  |-  ( ph  ->  { 0 ,  1 }  C_  RR )
2620, 25fssd 5458 . . . . . 6  |-  ( ph  ->  F : NN --> RR )
2726ffvelcdmda 5738 . . . . 5  |-  ( (
ph  /\  i  e.  NN )  ->  ( F `
 i )  e.  RR )
2819, 27remulcld 8138 . . . 4  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )  e.  RR )
298, 12, 13, 28fvmptd3 5696 . . 3  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) ) ) `  i )  =  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) ) )
307, 29syldan 282 . 2  |-  ( (
ph  /\  i  e.  Z )  ->  (
( n  e.  NN  |->  ( ( 1  / 
( 2 ^ n
) )  x.  ( F `  n )
) ) `  i
)  =  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) ) )
317, 28syldan 282 . 2  |-  ( (
ph  /\  i  e.  Z )  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  e.  RR )
32 eqid 2207 . . . 4  |-  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) )  =  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) )
3332, 10, 13, 18fvmptd3 5696 . . 3  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) `  i )  =  ( 1  / 
( 2 ^ i
) ) )
347, 33syldan 282 . 2  |-  ( (
ph  /\  i  e.  Z )  ->  (
( n  e.  NN  |->  ( 1  /  (
2 ^ n ) ) ) `  i
)  =  ( 1  /  ( 2 ^ i ) ) )
357, 19syldan 282 . 2  |-  ( (
ph  /\  i  e.  Z )  ->  (
1  /  ( 2 ^ i ) )  e.  RR )
36 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( F `  i
)  =  0 )
3736oveq2d 5983 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  =  ( ( 1  /  ( 2 ^ i ) )  x.  0 ) )
3818rpcnd 9855 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN )  ->  ( 1  /  ( 2 ^ i ) )  e.  CC )
3938adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( 1  /  (
2 ^ i ) )  e.  CC )
4039mul01d 8500 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  0 )  =  0 )
4137, 40eqtrd 2240 . . . . 5  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  =  0 )
4218adantr 276 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( 1  /  (
2 ^ i ) )  e.  RR+ )
4342rpge0d 9857 . . . . 5  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
0  <_  ( 1  /  ( 2 ^ i ) ) )
4441, 43eqbrtrd 4081 . . . 4  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  <_  ( 1  /  ( 2 ^ i ) ) )
45 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( F `  i
)  =  1 )
4645oveq2d 5983 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  =  ( ( 1  /  ( 2 ^ i ) )  x.  1 ) )
4738adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( 1  /  (
2 ^ i ) )  e.  CC )
4847mulridd 8124 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  1 )  =  ( 1  /  ( 2 ^ i ) ) )
4946, 48eqtrd 2240 . . . . 5  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  =  ( 1  /  ( 2 ^ i ) ) )
5019adantr 276 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( 1  /  (
2 ^ i ) )  e.  RR )
5150leidd 8622 . . . . 5  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( 1  /  (
2 ^ i ) )  <_  ( 1  /  ( 2 ^ i ) ) )
5249, 51eqbrtrd 4081 . . . 4  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  <_  ( 1  /  ( 2 ^ i ) ) )
5320ffvelcdmda 5738 . . . . 5  |-  ( (
ph  /\  i  e.  NN )  ->  ( F `
 i )  e. 
{ 0 ,  1 } )
54 elpri 3666 . . . . 5  |-  ( ( F `  i )  e.  { 0 ,  1 }  ->  (
( F `  i
)  =  0  \/  ( F `  i
)  =  1 ) )
5553, 54syl 14 . . . 4  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( F `  i )  =  0  \/  ( F `  i )  =  1 ) )
5644, 52, 55mpjaodan 800 . . 3  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )  <_ 
( 1  /  (
2 ^ i ) ) )
577, 56syldan 282 . 2  |-  ( (
ph  /\  i  e.  Z )  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  <_  ( 1  / 
( 2 ^ i
) ) )
5820, 8trilpolemclim 16177 . . 3  |-  ( ph  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n
) ) ) )  e.  dom  ~~>  )
59 nnuz 9719 . . . 4  |-  NN  =  ( ZZ>= `  1 )
6029, 28eqeltrd 2284 . . . . 5  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) ) ) `  i )  e.  RR )
6160recnd 8136 . . . 4  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) ) ) `  i )  e.  CC )
6259, 2, 61iserex 11765 . . 3  |-  ( ph  ->  (  seq 1 (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n ) ) ) )  e.  dom  ~~>  <->  seq M (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n ) ) ) )  e.  dom  ~~>  ) )
6358, 62mpbid 147 . 2  |-  ( ph  ->  seq M (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n
) ) ) )  e.  dom  ~~>  )
64 seqex 10631 . . . 4  |-  seq 1
(  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  e.  _V
65 rpreccl 9837 . . . . . . . 8  |-  ( 2  e.  RR+  ->  ( 1  /  2 )  e.  RR+ )
6614, 65ax-mp 5 . . . . . . 7  |-  ( 1  /  2 )  e.  RR+
6766a1i 9 . . . . . 6  |-  ( ph  ->  ( 1  /  2
)  e.  RR+ )
68 1zzd 9434 . . . . . 6  |-  ( ph  ->  1  e.  ZZ )
6967, 68rpexpcld 10879 . . . . 5  |-  ( ph  ->  ( ( 1  / 
2 ) ^ 1 )  e.  RR+ )
70 1mhlfehlf 9290 . . . . . . 7  |-  ( 1  -  ( 1  / 
2 ) )  =  ( 1  /  2
)
7170, 66eqeltri 2280 . . . . . 6  |-  ( 1  -  ( 1  / 
2 ) )  e.  RR+
7271a1i 9 . . . . 5  |-  ( ph  ->  ( 1  -  (
1  /  2 ) )  e.  RR+ )
7369, 72rpdivcld 9871 . . . 4  |-  ( ph  ->  ( ( ( 1  /  2 ) ^
1 )  /  (
1  -  ( 1  /  2 ) ) )  e.  RR+ )
74 halfcn 9286 . . . . . 6  |-  ( 1  /  2 )  e.  CC
7574a1i 9 . . . . 5  |-  ( ph  ->  ( 1  /  2
)  e.  CC )
76 halfge0 9288 . . . . . . . 8  |-  0  <_  ( 1  /  2
)
77 halfre 9285 . . . . . . . . 9  |-  ( 1  /  2 )  e.  RR
7877absidi 11552 . . . . . . . 8  |-  ( 0  <_  ( 1  / 
2 )  ->  ( abs `  ( 1  / 
2 ) )  =  ( 1  /  2
) )
7976, 78ax-mp 5 . . . . . . 7  |-  ( abs `  ( 1  /  2
) )  =  ( 1  /  2 )
80 halflt1 9289 . . . . . . 7  |-  ( 1  /  2 )  <  1
8179, 80eqbrtri 4080 . . . . . 6  |-  ( abs `  ( 1  /  2
) )  <  1
8281a1i 9 . . . . 5  |-  ( ph  ->  ( abs `  (
1  /  2 ) )  <  1 )
83 1nn0 9346 . . . . . 6  |-  1  e.  NN0
8483a1i 9 . . . . 5  |-  ( ph  ->  1  e.  NN0 )
85 oveq2 5975 . . . . . . . 8  |-  ( n  =  j  ->  (
2 ^ n )  =  ( 2 ^ j ) )
8685oveq2d 5983 . . . . . . 7  |-  ( n  =  j  ->  (
1  /  ( 2 ^ n ) )  =  ( 1  / 
( 2 ^ j
) ) )
87 elnnuz 9720 . . . . . . . . 9  |-  ( j  e.  NN  <->  j  e.  ( ZZ>= `  1 )
)
8887biimpri 133 . . . . . . . 8  |-  ( j  e.  ( ZZ>= `  1
)  ->  j  e.  NN )
8988adantl 277 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  j  e.  NN )
9014a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  2  e.  RR+ )
9189nnzd 9529 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  j  e.  ZZ )
9290, 91rpexpcld 10879 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( 2 ^ j )  e.  RR+ )
9392rpreccld 9864 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( 1  /  ( 2 ^ j ) )  e.  RR+ )
9432, 86, 89, 93fvmptd3 5696 . . . . . 6  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( (
n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) `  j )  =  ( 1  / 
( 2 ^ j
) ) )
95 2cnd 9144 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  2  e.  CC )
9690rpap0d 9859 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  2 #  0
)
9795, 96, 91exprecapd 10863 . . . . . 6  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( (
1  /  2 ) ^ j )  =  ( 1  /  (
2 ^ j ) ) )
9894, 97eqtr4d 2243 . . . . 5  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( (
n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) `  j )  =  ( ( 1  /  2 ) ^
j ) )
9975, 82, 84, 98geolim2 11938 . . . 4  |-  ( ph  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  ~~>  ( ( ( 1  /  2 ) ^
1 )  /  (
1  -  ( 1  /  2 ) ) ) )
100 breldmg 4903 . . . 4  |-  ( (  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  e.  _V  /\  (
( ( 1  / 
2 ) ^ 1 )  /  ( 1  -  ( 1  / 
2 ) ) )  e.  RR+  /\  seq 1
(  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  ~~>  ( ( ( 1  /  2
) ^ 1 )  /  ( 1  -  ( 1  /  2
) ) ) )  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  e.  dom  ~~>  )
10164, 73, 99, 100mp3an2i 1355 . . 3  |-  ( ph  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  e.  dom  ~~>  )
10233, 38eqeltrd 2284 . . . 4  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) `  i )  e.  CC )
10359, 2, 102iserex 11765 . . 3  |-  ( ph  ->  (  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  e.  dom  ~~>  <->  seq M (  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  e.  dom  ~~>  ) )
104101, 103mpbid 147 . 2  |-  ( ph  ->  seq M (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  e.  dom  ~~>  )
1051, 3, 30, 31, 34, 35, 57, 63, 104isumle 11921 1  |-  ( ph  -> 
sum_ i  e.  Z  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  <_  sum_ i  e.  Z  ( 1  / 
( 2 ^ i
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2178   _Vcvv 2776    C_ wss 3174   {cpr 3644   class class class wbr 4059    |-> cmpt 4121   dom cdm 4693   -->wf 5286   ` cfv 5290  (class class class)co 5967   CCcc 7958   RRcr 7959   0cc0 7960   1c1 7961    + caddc 7963    x. cmul 7965    < clt 8142    <_ cle 8143    - cmin 8278    / cdiv 8780   NNcn 9071   2c2 9122   NN0cn0 9330   ZZ>=cuz 9683   RR+crp 9810    seqcseq 10629   ^cexp 10720   abscabs 11423    ~~> cli 11704   sum_csu 11779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-ico 10051  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-sumdc 11780
This theorem is referenced by:  trilpolemgt1  16180  trilpolemeq1  16181
  Copyright terms: Public domain W3C validator