Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpolemisumle Unicode version

Theorem trilpolemisumle 14825
Description: Lemma for trilpo 14830. An upper bound for the sum of the digits beyond a certain point. (Contributed by Jim Kingdon, 28-Aug-2023.)
Hypotheses
Ref Expression
trilpolemgt1.f  |-  ( ph  ->  F : NN --> { 0 ,  1 } )
trilpolemgt1.a  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)
trilpolemisumle.z  |-  Z  =  ( ZZ>= `  M )
trilpolemisumle.m  |-  ( ph  ->  M  e.  NN )
Assertion
Ref Expression
trilpolemisumle  |-  ( ph  -> 
sum_ i  e.  Z  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  <_  sum_ i  e.  Z  ( 1  / 
( 2 ^ i
) ) )
Distinct variable groups:    i, F    i, M    i, Z    ph, i
Allowed substitution hint:    A( i)

Proof of Theorem trilpolemisumle
Dummy variables  n  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trilpolemisumle.z . 2  |-  Z  =  ( ZZ>= `  M )
2 trilpolemisumle.m . . 3  |-  ( ph  ->  M  e.  NN )
32nnzd 9376 . 2  |-  ( ph  ->  M  e.  ZZ )
41eleq2i 2244 . . . . 5  |-  ( i  e.  Z  <->  i  e.  ( ZZ>= `  M )
)
54biimpi 120 . . . 4  |-  ( i  e.  Z  ->  i  e.  ( ZZ>= `  M )
)
6 eluznn 9602 . . . 4  |-  ( ( M  e.  NN  /\  i  e.  ( ZZ>= `  M ) )  -> 
i  e.  NN )
72, 5, 6syl2an 289 . . 3  |-  ( (
ph  /\  i  e.  Z )  ->  i  e.  NN )
8 eqid 2177 . . . 4  |-  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n ) ) )  =  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n
) ) )
9 oveq2 5885 . . . . . 6  |-  ( n  =  i  ->  (
2 ^ n )  =  ( 2 ^ i ) )
109oveq2d 5893 . . . . 5  |-  ( n  =  i  ->  (
1  /  ( 2 ^ n ) )  =  ( 1  / 
( 2 ^ i
) ) )
11 fveq2 5517 . . . . 5  |-  ( n  =  i  ->  ( F `  n )  =  ( F `  i ) )
1210, 11oveq12d 5895 . . . 4  |-  ( n  =  i  ->  (
( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) )  =  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) ) )
13 simpr 110 . . . 4  |-  ( (
ph  /\  i  e.  NN )  ->  i  e.  NN )
14 2rp 9660 . . . . . . . . 9  |-  2  e.  RR+
1514a1i 9 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN )  ->  2  e.  RR+ )
1613nnzd 9376 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN )  ->  i  e.  ZZ )
1715, 16rpexpcld 10680 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN )  ->  ( 2 ^ i )  e.  RR+ )
1817rpreccld 9709 . . . . . 6  |-  ( (
ph  /\  i  e.  NN )  ->  ( 1  /  ( 2 ^ i ) )  e.  RR+ )
1918rpred 9698 . . . . 5  |-  ( (
ph  /\  i  e.  NN )  ->  ( 1  /  ( 2 ^ i ) )  e.  RR )
20 trilpolemgt1.f . . . . . . 7  |-  ( ph  ->  F : NN --> { 0 ,  1 } )
21 0re 7959 . . . . . . . . 9  |-  0  e.  RR
22 1re 7958 . . . . . . . . 9  |-  1  e.  RR
23 prssi 3752 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  1  e.  RR )  ->  { 0 ,  1 }  C_  RR )
2421, 22, 23mp2an 426 . . . . . . . 8  |-  { 0 ,  1 }  C_  RR
2524a1i 9 . . . . . . 7  |-  ( ph  ->  { 0 ,  1 }  C_  RR )
2620, 25fssd 5380 . . . . . 6  |-  ( ph  ->  F : NN --> RR )
2726ffvelcdmda 5653 . . . . 5  |-  ( (
ph  /\  i  e.  NN )  ->  ( F `
 i )  e.  RR )
2819, 27remulcld 7990 . . . 4  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )  e.  RR )
298, 12, 13, 28fvmptd3 5611 . . 3  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) ) ) `  i )  =  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) ) )
307, 29syldan 282 . 2  |-  ( (
ph  /\  i  e.  Z )  ->  (
( n  e.  NN  |->  ( ( 1  / 
( 2 ^ n
) )  x.  ( F `  n )
) ) `  i
)  =  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) ) )
317, 28syldan 282 . 2  |-  ( (
ph  /\  i  e.  Z )  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  e.  RR )
32 eqid 2177 . . . 4  |-  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) )  =  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) )
3332, 10, 13, 18fvmptd3 5611 . . 3  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) `  i )  =  ( 1  / 
( 2 ^ i
) ) )
347, 33syldan 282 . 2  |-  ( (
ph  /\  i  e.  Z )  ->  (
( n  e.  NN  |->  ( 1  /  (
2 ^ n ) ) ) `  i
)  =  ( 1  /  ( 2 ^ i ) ) )
357, 19syldan 282 . 2  |-  ( (
ph  /\  i  e.  Z )  ->  (
1  /  ( 2 ^ i ) )  e.  RR )
36 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( F `  i
)  =  0 )
3736oveq2d 5893 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  =  ( ( 1  /  ( 2 ^ i ) )  x.  0 ) )
3818rpcnd 9700 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN )  ->  ( 1  /  ( 2 ^ i ) )  e.  CC )
3938adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( 1  /  (
2 ^ i ) )  e.  CC )
4039mul01d 8352 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  0 )  =  0 )
4137, 40eqtrd 2210 . . . . 5  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  =  0 )
4218adantr 276 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( 1  /  (
2 ^ i ) )  e.  RR+ )
4342rpge0d 9702 . . . . 5  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
0  <_  ( 1  /  ( 2 ^ i ) ) )
4441, 43eqbrtrd 4027 . . . 4  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  <_  ( 1  /  ( 2 ^ i ) ) )
45 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( F `  i
)  =  1 )
4645oveq2d 5893 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  =  ( ( 1  /  ( 2 ^ i ) )  x.  1 ) )
4738adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( 1  /  (
2 ^ i ) )  e.  CC )
4847mulridd 7976 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  1 )  =  ( 1  /  ( 2 ^ i ) ) )
4946, 48eqtrd 2210 . . . . 5  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  =  ( 1  /  ( 2 ^ i ) ) )
5019adantr 276 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( 1  /  (
2 ^ i ) )  e.  RR )
5150leidd 8473 . . . . 5  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( 1  /  (
2 ^ i ) )  <_  ( 1  /  ( 2 ^ i ) ) )
5249, 51eqbrtrd 4027 . . . 4  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  <_  ( 1  /  ( 2 ^ i ) ) )
5320ffvelcdmda 5653 . . . . 5  |-  ( (
ph  /\  i  e.  NN )  ->  ( F `
 i )  e. 
{ 0 ,  1 } )
54 elpri 3617 . . . . 5  |-  ( ( F `  i )  e.  { 0 ,  1 }  ->  (
( F `  i
)  =  0  \/  ( F `  i
)  =  1 ) )
5553, 54syl 14 . . . 4  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( F `  i )  =  0  \/  ( F `  i )  =  1 ) )
5644, 52, 55mpjaodan 798 . . 3  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )  <_ 
( 1  /  (
2 ^ i ) ) )
577, 56syldan 282 . 2  |-  ( (
ph  /\  i  e.  Z )  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  <_  ( 1  / 
( 2 ^ i
) ) )
5820, 8trilpolemclim 14823 . . 3  |-  ( ph  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n
) ) ) )  e.  dom  ~~>  )
59 nnuz 9565 . . . 4  |-  NN  =  ( ZZ>= `  1 )
6029, 28eqeltrd 2254 . . . . 5  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) ) ) `  i )  e.  RR )
6160recnd 7988 . . . 4  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) ) ) `  i )  e.  CC )
6259, 2, 61iserex 11349 . . 3  |-  ( ph  ->  (  seq 1 (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n ) ) ) )  e.  dom  ~~>  <->  seq M (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n ) ) ) )  e.  dom  ~~>  ) )
6358, 62mpbid 147 . 2  |-  ( ph  ->  seq M (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n
) ) ) )  e.  dom  ~~>  )
64 seqex 10449 . . . 4  |-  seq 1
(  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  e.  _V
65 rpreccl 9682 . . . . . . . 8  |-  ( 2  e.  RR+  ->  ( 1  /  2 )  e.  RR+ )
6614, 65ax-mp 5 . . . . . . 7  |-  ( 1  /  2 )  e.  RR+
6766a1i 9 . . . . . 6  |-  ( ph  ->  ( 1  /  2
)  e.  RR+ )
68 1zzd 9282 . . . . . 6  |-  ( ph  ->  1  e.  ZZ )
6967, 68rpexpcld 10680 . . . . 5  |-  ( ph  ->  ( ( 1  / 
2 ) ^ 1 )  e.  RR+ )
70 1mhlfehlf 9139 . . . . . . 7  |-  ( 1  -  ( 1  / 
2 ) )  =  ( 1  /  2
)
7170, 66eqeltri 2250 . . . . . 6  |-  ( 1  -  ( 1  / 
2 ) )  e.  RR+
7271a1i 9 . . . . 5  |-  ( ph  ->  ( 1  -  (
1  /  2 ) )  e.  RR+ )
7369, 72rpdivcld 9716 . . . 4  |-  ( ph  ->  ( ( ( 1  /  2 ) ^
1 )  /  (
1  -  ( 1  /  2 ) ) )  e.  RR+ )
74 halfcn 9135 . . . . . 6  |-  ( 1  /  2 )  e.  CC
7574a1i 9 . . . . 5  |-  ( ph  ->  ( 1  /  2
)  e.  CC )
76 halfge0 9137 . . . . . . . 8  |-  0  <_  ( 1  /  2
)
77 halfre 9134 . . . . . . . . 9  |-  ( 1  /  2 )  e.  RR
7877absidi 11137 . . . . . . . 8  |-  ( 0  <_  ( 1  / 
2 )  ->  ( abs `  ( 1  / 
2 ) )  =  ( 1  /  2
) )
7976, 78ax-mp 5 . . . . . . 7  |-  ( abs `  ( 1  /  2
) )  =  ( 1  /  2 )
80 halflt1 9138 . . . . . . 7  |-  ( 1  /  2 )  <  1
8179, 80eqbrtri 4026 . . . . . 6  |-  ( abs `  ( 1  /  2
) )  <  1
8281a1i 9 . . . . 5  |-  ( ph  ->  ( abs `  (
1  /  2 ) )  <  1 )
83 1nn0 9194 . . . . . 6  |-  1  e.  NN0
8483a1i 9 . . . . 5  |-  ( ph  ->  1  e.  NN0 )
85 oveq2 5885 . . . . . . . 8  |-  ( n  =  j  ->  (
2 ^ n )  =  ( 2 ^ j ) )
8685oveq2d 5893 . . . . . . 7  |-  ( n  =  j  ->  (
1  /  ( 2 ^ n ) )  =  ( 1  / 
( 2 ^ j
) ) )
87 elnnuz 9566 . . . . . . . . 9  |-  ( j  e.  NN  <->  j  e.  ( ZZ>= `  1 )
)
8887biimpri 133 . . . . . . . 8  |-  ( j  e.  ( ZZ>= `  1
)  ->  j  e.  NN )
8988adantl 277 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  j  e.  NN )
9014a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  2  e.  RR+ )
9189nnzd 9376 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  j  e.  ZZ )
9290, 91rpexpcld 10680 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( 2 ^ j )  e.  RR+ )
9392rpreccld 9709 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( 1  /  ( 2 ^ j ) )  e.  RR+ )
9432, 86, 89, 93fvmptd3 5611 . . . . . 6  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( (
n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) `  j )  =  ( 1  / 
( 2 ^ j
) ) )
95 2cnd 8994 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  2  e.  CC )
9690rpap0d 9704 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  2 #  0
)
9795, 96, 91exprecapd 10664 . . . . . 6  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( (
1  /  2 ) ^ j )  =  ( 1  /  (
2 ^ j ) ) )
9894, 97eqtr4d 2213 . . . . 5  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( (
n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) `  j )  =  ( ( 1  /  2 ) ^
j ) )
9975, 82, 84, 98geolim2 11522 . . . 4  |-  ( ph  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  ~~>  ( ( ( 1  /  2 ) ^
1 )  /  (
1  -  ( 1  /  2 ) ) ) )
100 breldmg 4835 . . . 4  |-  ( (  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  e.  _V  /\  (
( ( 1  / 
2 ) ^ 1 )  /  ( 1  -  ( 1  / 
2 ) ) )  e.  RR+  /\  seq 1
(  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  ~~>  ( ( ( 1  /  2
) ^ 1 )  /  ( 1  -  ( 1  /  2
) ) ) )  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  e.  dom  ~~>  )
10164, 73, 99, 100mp3an2i 1342 . . 3  |-  ( ph  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  e.  dom  ~~>  )
10233, 38eqeltrd 2254 . . . 4  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) `  i )  e.  CC )
10359, 2, 102iserex 11349 . . 3  |-  ( ph  ->  (  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  e.  dom  ~~>  <->  seq M (  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  e.  dom  ~~>  ) )
104101, 103mpbid 147 . 2  |-  ( ph  ->  seq M (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  e.  dom  ~~>  )
1051, 3, 30, 31, 34, 35, 57, 63, 104isumle 11505 1  |-  ( ph  -> 
sum_ i  e.  Z  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  <_  sum_ i  e.  Z  ( 1  / 
( 2 ^ i
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708    = wceq 1353    e. wcel 2148   _Vcvv 2739    C_ wss 3131   {cpr 3595   class class class wbr 4005    |-> cmpt 4066   dom cdm 4628   -->wf 5214   ` cfv 5218  (class class class)co 5877   CCcc 7811   RRcr 7812   0cc0 7813   1c1 7814    + caddc 7816    x. cmul 7818    < clt 7994    <_ cle 7995    - cmin 8130    / cdiv 8631   NNcn 8921   2c2 8972   NN0cn0 9178   ZZ>=cuz 9530   RR+crp 9655    seqcseq 10447   ^cexp 10521   abscabs 11008    ~~> cli 11288   sum_csu 11363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-frec 6394  df-1o 6419  df-oadd 6423  df-er 6537  df-en 6743  df-dom 6744  df-fin 6745  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-ico 9896  df-fz 10011  df-fzo 10145  df-seqfrec 10448  df-exp 10522  df-ihash 10758  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-clim 11289  df-sumdc 11364
This theorem is referenced by:  trilpolemgt1  14826  trilpolemeq1  14827
  Copyright terms: Public domain W3C validator