Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpolemisumle Unicode version

Theorem trilpolemisumle 15682
Description: Lemma for trilpo 15687. An upper bound for the sum of the digits beyond a certain point. (Contributed by Jim Kingdon, 28-Aug-2023.)
Hypotheses
Ref Expression
trilpolemgt1.f  |-  ( ph  ->  F : NN --> { 0 ,  1 } )
trilpolemgt1.a  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)
trilpolemisumle.z  |-  Z  =  ( ZZ>= `  M )
trilpolemisumle.m  |-  ( ph  ->  M  e.  NN )
Assertion
Ref Expression
trilpolemisumle  |-  ( ph  -> 
sum_ i  e.  Z  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  <_  sum_ i  e.  Z  ( 1  / 
( 2 ^ i
) ) )
Distinct variable groups:    i, F    i, M    i, Z    ph, i
Allowed substitution hint:    A( i)

Proof of Theorem trilpolemisumle
Dummy variables  n  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trilpolemisumle.z . 2  |-  Z  =  ( ZZ>= `  M )
2 trilpolemisumle.m . . 3  |-  ( ph  ->  M  e.  NN )
32nnzd 9447 . 2  |-  ( ph  ->  M  e.  ZZ )
41eleq2i 2263 . . . . 5  |-  ( i  e.  Z  <->  i  e.  ( ZZ>= `  M )
)
54biimpi 120 . . . 4  |-  ( i  e.  Z  ->  i  e.  ( ZZ>= `  M )
)
6 eluznn 9674 . . . 4  |-  ( ( M  e.  NN  /\  i  e.  ( ZZ>= `  M ) )  -> 
i  e.  NN )
72, 5, 6syl2an 289 . . 3  |-  ( (
ph  /\  i  e.  Z )  ->  i  e.  NN )
8 eqid 2196 . . . 4  |-  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n ) ) )  =  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n
) ) )
9 oveq2 5930 . . . . . 6  |-  ( n  =  i  ->  (
2 ^ n )  =  ( 2 ^ i ) )
109oveq2d 5938 . . . . 5  |-  ( n  =  i  ->  (
1  /  ( 2 ^ n ) )  =  ( 1  / 
( 2 ^ i
) ) )
11 fveq2 5558 . . . . 5  |-  ( n  =  i  ->  ( F `  n )  =  ( F `  i ) )
1210, 11oveq12d 5940 . . . 4  |-  ( n  =  i  ->  (
( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) )  =  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) ) )
13 simpr 110 . . . 4  |-  ( (
ph  /\  i  e.  NN )  ->  i  e.  NN )
14 2rp 9733 . . . . . . . . 9  |-  2  e.  RR+
1514a1i 9 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN )  ->  2  e.  RR+ )
1613nnzd 9447 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN )  ->  i  e.  ZZ )
1715, 16rpexpcld 10789 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN )  ->  ( 2 ^ i )  e.  RR+ )
1817rpreccld 9782 . . . . . 6  |-  ( (
ph  /\  i  e.  NN )  ->  ( 1  /  ( 2 ^ i ) )  e.  RR+ )
1918rpred 9771 . . . . 5  |-  ( (
ph  /\  i  e.  NN )  ->  ( 1  /  ( 2 ^ i ) )  e.  RR )
20 trilpolemgt1.f . . . . . . 7  |-  ( ph  ->  F : NN --> { 0 ,  1 } )
21 0re 8026 . . . . . . . . 9  |-  0  e.  RR
22 1re 8025 . . . . . . . . 9  |-  1  e.  RR
23 prssi 3780 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  1  e.  RR )  ->  { 0 ,  1 }  C_  RR )
2421, 22, 23mp2an 426 . . . . . . . 8  |-  { 0 ,  1 }  C_  RR
2524a1i 9 . . . . . . 7  |-  ( ph  ->  { 0 ,  1 }  C_  RR )
2620, 25fssd 5420 . . . . . 6  |-  ( ph  ->  F : NN --> RR )
2726ffvelcdmda 5697 . . . . 5  |-  ( (
ph  /\  i  e.  NN )  ->  ( F `
 i )  e.  RR )
2819, 27remulcld 8057 . . . 4  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )  e.  RR )
298, 12, 13, 28fvmptd3 5655 . . 3  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) ) ) `  i )  =  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i
) ) )
307, 29syldan 282 . 2  |-  ( (
ph  /\  i  e.  Z )  ->  (
( n  e.  NN  |->  ( ( 1  / 
( 2 ^ n
) )  x.  ( F `  n )
) ) `  i
)  =  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) ) )
317, 28syldan 282 . 2  |-  ( (
ph  /\  i  e.  Z )  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  e.  RR )
32 eqid 2196 . . . 4  |-  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) )  =  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) )
3332, 10, 13, 18fvmptd3 5655 . . 3  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) `  i )  =  ( 1  / 
( 2 ^ i
) ) )
347, 33syldan 282 . 2  |-  ( (
ph  /\  i  e.  Z )  ->  (
( n  e.  NN  |->  ( 1  /  (
2 ^ n ) ) ) `  i
)  =  ( 1  /  ( 2 ^ i ) ) )
357, 19syldan 282 . 2  |-  ( (
ph  /\  i  e.  Z )  ->  (
1  /  ( 2 ^ i ) )  e.  RR )
36 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( F `  i
)  =  0 )
3736oveq2d 5938 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  =  ( ( 1  /  ( 2 ^ i ) )  x.  0 ) )
3818rpcnd 9773 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN )  ->  ( 1  /  ( 2 ^ i ) )  e.  CC )
3938adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( 1  /  (
2 ^ i ) )  e.  CC )
4039mul01d 8419 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  0 )  =  0 )
4137, 40eqtrd 2229 . . . . 5  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  =  0 )
4218adantr 276 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( 1  /  (
2 ^ i ) )  e.  RR+ )
4342rpge0d 9775 . . . . 5  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
0  <_  ( 1  /  ( 2 ^ i ) ) )
4441, 43eqbrtrd 4055 . . . 4  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  0 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  <_  ( 1  /  ( 2 ^ i ) ) )
45 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( F `  i
)  =  1 )
4645oveq2d 5938 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  =  ( ( 1  /  ( 2 ^ i ) )  x.  1 ) )
4738adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( 1  /  (
2 ^ i ) )  e.  CC )
4847mulridd 8043 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  1 )  =  ( 1  /  ( 2 ^ i ) ) )
4946, 48eqtrd 2229 . . . . 5  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  =  ( 1  /  ( 2 ^ i ) ) )
5019adantr 276 . . . . . 6  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( 1  /  (
2 ^ i ) )  e.  RR )
5150leidd 8541 . . . . 5  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( 1  /  (
2 ^ i ) )  <_  ( 1  /  ( 2 ^ i ) ) )
5249, 51eqbrtrd 4055 . . . 4  |-  ( ( ( ph  /\  i  e.  NN )  /\  ( F `  i )  =  1 )  -> 
( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  <_  ( 1  /  ( 2 ^ i ) ) )
5320ffvelcdmda 5697 . . . . 5  |-  ( (
ph  /\  i  e.  NN )  ->  ( F `
 i )  e. 
{ 0 ,  1 } )
54 elpri 3645 . . . . 5  |-  ( ( F `  i )  e.  { 0 ,  1 }  ->  (
( F `  i
)  =  0  \/  ( F `  i
)  =  1 ) )
5553, 54syl 14 . . . 4  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( F `  i )  =  0  \/  ( F `  i )  =  1 ) )
5644, 52, 55mpjaodan 799 . . 3  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )  <_ 
( 1  /  (
2 ^ i ) ) )
577, 56syldan 282 . 2  |-  ( (
ph  /\  i  e.  Z )  ->  (
( 1  /  (
2 ^ i ) )  x.  ( F `
 i ) )  <_  ( 1  / 
( 2 ^ i
) ) )
5820, 8trilpolemclim 15680 . . 3  |-  ( ph  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n
) ) ) )  e.  dom  ~~>  )
59 nnuz 9637 . . . 4  |-  NN  =  ( ZZ>= `  1 )
6029, 28eqeltrd 2273 . . . . 5  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) ) ) `  i )  e.  RR )
6160recnd 8055 . . . 4  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) ) ) `  i )  e.  CC )
6259, 2, 61iserex 11504 . . 3  |-  ( ph  ->  (  seq 1 (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n ) ) ) )  e.  dom  ~~>  <->  seq M (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n ) ) ) )  e.  dom  ~~>  ) )
6358, 62mpbid 147 . 2  |-  ( ph  ->  seq M (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( F `  n
) ) ) )  e.  dom  ~~>  )
64 seqex 10541 . . . 4  |-  seq 1
(  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  e.  _V
65 rpreccl 9755 . . . . . . . 8  |-  ( 2  e.  RR+  ->  ( 1  /  2 )  e.  RR+ )
6614, 65ax-mp 5 . . . . . . 7  |-  ( 1  /  2 )  e.  RR+
6766a1i 9 . . . . . 6  |-  ( ph  ->  ( 1  /  2
)  e.  RR+ )
68 1zzd 9353 . . . . . 6  |-  ( ph  ->  1  e.  ZZ )
6967, 68rpexpcld 10789 . . . . 5  |-  ( ph  ->  ( ( 1  / 
2 ) ^ 1 )  e.  RR+ )
70 1mhlfehlf 9209 . . . . . . 7  |-  ( 1  -  ( 1  / 
2 ) )  =  ( 1  /  2
)
7170, 66eqeltri 2269 . . . . . 6  |-  ( 1  -  ( 1  / 
2 ) )  e.  RR+
7271a1i 9 . . . . 5  |-  ( ph  ->  ( 1  -  (
1  /  2 ) )  e.  RR+ )
7369, 72rpdivcld 9789 . . . 4  |-  ( ph  ->  ( ( ( 1  /  2 ) ^
1 )  /  (
1  -  ( 1  /  2 ) ) )  e.  RR+ )
74 halfcn 9205 . . . . . 6  |-  ( 1  /  2 )  e.  CC
7574a1i 9 . . . . 5  |-  ( ph  ->  ( 1  /  2
)  e.  CC )
76 halfge0 9207 . . . . . . . 8  |-  0  <_  ( 1  /  2
)
77 halfre 9204 . . . . . . . . 9  |-  ( 1  /  2 )  e.  RR
7877absidi 11291 . . . . . . . 8  |-  ( 0  <_  ( 1  / 
2 )  ->  ( abs `  ( 1  / 
2 ) )  =  ( 1  /  2
) )
7976, 78ax-mp 5 . . . . . . 7  |-  ( abs `  ( 1  /  2
) )  =  ( 1  /  2 )
80 halflt1 9208 . . . . . . 7  |-  ( 1  /  2 )  <  1
8179, 80eqbrtri 4054 . . . . . 6  |-  ( abs `  ( 1  /  2
) )  <  1
8281a1i 9 . . . . 5  |-  ( ph  ->  ( abs `  (
1  /  2 ) )  <  1 )
83 1nn0 9265 . . . . . 6  |-  1  e.  NN0
8483a1i 9 . . . . 5  |-  ( ph  ->  1  e.  NN0 )
85 oveq2 5930 . . . . . . . 8  |-  ( n  =  j  ->  (
2 ^ n )  =  ( 2 ^ j ) )
8685oveq2d 5938 . . . . . . 7  |-  ( n  =  j  ->  (
1  /  ( 2 ^ n ) )  =  ( 1  / 
( 2 ^ j
) ) )
87 elnnuz 9638 . . . . . . . . 9  |-  ( j  e.  NN  <->  j  e.  ( ZZ>= `  1 )
)
8887biimpri 133 . . . . . . . 8  |-  ( j  e.  ( ZZ>= `  1
)  ->  j  e.  NN )
8988adantl 277 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  j  e.  NN )
9014a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  2  e.  RR+ )
9189nnzd 9447 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  j  e.  ZZ )
9290, 91rpexpcld 10789 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( 2 ^ j )  e.  RR+ )
9392rpreccld 9782 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( 1  /  ( 2 ^ j ) )  e.  RR+ )
9432, 86, 89, 93fvmptd3 5655 . . . . . 6  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( (
n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) `  j )  =  ( 1  / 
( 2 ^ j
) ) )
95 2cnd 9063 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  2  e.  CC )
9690rpap0d 9777 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  2 #  0
)
9795, 96, 91exprecapd 10773 . . . . . 6  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( (
1  /  2 ) ^ j )  =  ( 1  /  (
2 ^ j ) ) )
9894, 97eqtr4d 2232 . . . . 5  |-  ( (
ph  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( (
n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) `  j )  =  ( ( 1  /  2 ) ^
j ) )
9975, 82, 84, 98geolim2 11677 . . . 4  |-  ( ph  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  ~~>  ( ( ( 1  /  2 ) ^
1 )  /  (
1  -  ( 1  /  2 ) ) ) )
100 breldmg 4872 . . . 4  |-  ( (  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  e.  _V  /\  (
( ( 1  / 
2 ) ^ 1 )  /  ( 1  -  ( 1  / 
2 ) ) )  e.  RR+  /\  seq 1
(  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  ~~>  ( ( ( 1  /  2
) ^ 1 )  /  ( 1  -  ( 1  /  2
) ) ) )  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  e.  dom  ~~>  )
10164, 73, 99, 100mp3an2i 1353 . . 3  |-  ( ph  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  e.  dom  ~~>  )
10233, 38eqeltrd 2273 . . . 4  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) `  i )  e.  CC )
10359, 2, 102iserex 11504 . . 3  |-  ( ph  ->  (  seq 1 (  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  e.  dom  ~~>  <->  seq M (  +  ,  ( n  e.  NN  |->  ( 1  /  ( 2 ^ n ) ) ) )  e.  dom  ~~>  ) )
104101, 103mpbid 147 . 2  |-  ( ph  ->  seq M (  +  ,  ( n  e.  NN  |->  ( 1  / 
( 2 ^ n
) ) ) )  e.  dom  ~~>  )
1051, 3, 30, 31, 34, 35, 57, 63, 104isumle 11660 1  |-  ( ph  -> 
sum_ i  e.  Z  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)  <_  sum_ i  e.  Z  ( 1  / 
( 2 ^ i
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2167   _Vcvv 2763    C_ wss 3157   {cpr 3623   class class class wbr 4033    |-> cmpt 4094   dom cdm 4663   -->wf 5254   ` cfv 5258  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884    < clt 8061    <_ cle 8062    - cmin 8197    / cdiv 8699   NNcn 8990   2c2 9041   NN0cn0 9249   ZZ>=cuz 9601   RR+crp 9728    seqcseq 10539   ^cexp 10630   abscabs 11162    ~~> cli 11443   sum_csu 11518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-ico 9969  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519
This theorem is referenced by:  trilpolemgt1  15683  trilpolemeq1  15684
  Copyright terms: Public domain W3C validator