Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > trilpolemisumle | Unicode version |
Description: Lemma for trilpo 14075. An upper bound for the sum of the digits beyond a certain point. (Contributed by Jim Kingdon, 28-Aug-2023.) |
Ref | Expression |
---|---|
trilpolemgt1.f | |
trilpolemgt1.a | |
trilpolemisumle.z | |
trilpolemisumle.m |
Ref | Expression |
---|---|
trilpolemisumle |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trilpolemisumle.z | . 2 | |
2 | trilpolemisumle.m | . . 3 | |
3 | 2 | nnzd 9333 | . 2 |
4 | 1 | eleq2i 2237 | . . . . 5 |
5 | 4 | biimpi 119 | . . . 4 |
6 | eluznn 9559 | . . . 4 | |
7 | 2, 5, 6 | syl2an 287 | . . 3 |
8 | eqid 2170 | . . . 4 | |
9 | oveq2 5861 | . . . . . 6 | |
10 | 9 | oveq2d 5869 | . . . . 5 |
11 | fveq2 5496 | . . . . 5 | |
12 | 10, 11 | oveq12d 5871 | . . . 4 |
13 | simpr 109 | . . . 4 | |
14 | 2rp 9615 | . . . . . . . . 9 | |
15 | 14 | a1i 9 | . . . . . . . 8 |
16 | 13 | nnzd 9333 | . . . . . . . 8 |
17 | 15, 16 | rpexpcld 10633 | . . . . . . 7 |
18 | 17 | rpreccld 9664 | . . . . . 6 |
19 | 18 | rpred 9653 | . . . . 5 |
20 | trilpolemgt1.f | . . . . . . 7 | |
21 | 0re 7920 | . . . . . . . . 9 | |
22 | 1re 7919 | . . . . . . . . 9 | |
23 | prssi 3738 | . . . . . . . . 9 | |
24 | 21, 22, 23 | mp2an 424 | . . . . . . . 8 |
25 | 24 | a1i 9 | . . . . . . 7 |
26 | 20, 25 | fssd 5360 | . . . . . 6 |
27 | 26 | ffvelrnda 5631 | . . . . 5 |
28 | 19, 27 | remulcld 7950 | . . . 4 |
29 | 8, 12, 13, 28 | fvmptd3 5589 | . . 3 |
30 | 7, 29 | syldan 280 | . 2 |
31 | 7, 28 | syldan 280 | . 2 |
32 | eqid 2170 | . . . 4 | |
33 | 32, 10, 13, 18 | fvmptd3 5589 | . . 3 |
34 | 7, 33 | syldan 280 | . 2 |
35 | 7, 19 | syldan 280 | . 2 |
36 | simpr 109 | . . . . . . 7 | |
37 | 36 | oveq2d 5869 | . . . . . 6 |
38 | 18 | rpcnd 9655 | . . . . . . . 8 |
39 | 38 | adantr 274 | . . . . . . 7 |
40 | 39 | mul01d 8312 | . . . . . 6 |
41 | 37, 40 | eqtrd 2203 | . . . . 5 |
42 | 18 | adantr 274 | . . . . . 6 |
43 | 42 | rpge0d 9657 | . . . . 5 |
44 | 41, 43 | eqbrtrd 4011 | . . . 4 |
45 | simpr 109 | . . . . . . 7 | |
46 | 45 | oveq2d 5869 | . . . . . 6 |
47 | 38 | adantr 274 | . . . . . . 7 |
48 | 47 | mulid1d 7937 | . . . . . 6 |
49 | 46, 48 | eqtrd 2203 | . . . . 5 |
50 | 19 | adantr 274 | . . . . . 6 |
51 | 50 | leidd 8433 | . . . . 5 |
52 | 49, 51 | eqbrtrd 4011 | . . . 4 |
53 | 20 | ffvelrnda 5631 | . . . . 5 |
54 | elpri 3606 | . . . . 5 | |
55 | 53, 54 | syl 14 | . . . 4 |
56 | 44, 52, 55 | mpjaodan 793 | . . 3 |
57 | 7, 56 | syldan 280 | . 2 |
58 | 20, 8 | trilpolemclim 14068 | . . 3 |
59 | nnuz 9522 | . . . 4 | |
60 | 29, 28 | eqeltrd 2247 | . . . . 5 |
61 | 60 | recnd 7948 | . . . 4 |
62 | 59, 2, 61 | iserex 11302 | . . 3 |
63 | 58, 62 | mpbid 146 | . 2 |
64 | seqex 10403 | . . . 4 | |
65 | rpreccl 9637 | . . . . . . . 8 | |
66 | 14, 65 | ax-mp 5 | . . . . . . 7 |
67 | 66 | a1i 9 | . . . . . 6 |
68 | 1zzd 9239 | . . . . . 6 | |
69 | 67, 68 | rpexpcld 10633 | . . . . 5 |
70 | 1mhlfehlf 9096 | . . . . . . 7 | |
71 | 70, 66 | eqeltri 2243 | . . . . . 6 |
72 | 71 | a1i 9 | . . . . 5 |
73 | 69, 72 | rpdivcld 9671 | . . . 4 |
74 | halfcn 9092 | . . . . . 6 | |
75 | 74 | a1i 9 | . . . . 5 |
76 | halfge0 9094 | . . . . . . . 8 | |
77 | halfre 9091 | . . . . . . . . 9 | |
78 | 77 | absidi 11090 | . . . . . . . 8 |
79 | 76, 78 | ax-mp 5 | . . . . . . 7 |
80 | halflt1 9095 | . . . . . . 7 | |
81 | 79, 80 | eqbrtri 4010 | . . . . . 6 |
82 | 81 | a1i 9 | . . . . 5 |
83 | 1nn0 9151 | . . . . . 6 | |
84 | 83 | a1i 9 | . . . . 5 |
85 | oveq2 5861 | . . . . . . . 8 | |
86 | 85 | oveq2d 5869 | . . . . . . 7 |
87 | elnnuz 9523 | . . . . . . . . 9 | |
88 | 87 | biimpri 132 | . . . . . . . 8 |
89 | 88 | adantl 275 | . . . . . . 7 |
90 | 14 | a1i 9 | . . . . . . . . 9 |
91 | 89 | nnzd 9333 | . . . . . . . . 9 |
92 | 90, 91 | rpexpcld 10633 | . . . . . . . 8 |
93 | 92 | rpreccld 9664 | . . . . . . 7 |
94 | 32, 86, 89, 93 | fvmptd3 5589 | . . . . . 6 |
95 | 2cnd 8951 | . . . . . . 7 | |
96 | 90 | rpap0d 9659 | . . . . . . 7 # |
97 | 95, 96, 91 | exprecapd 10617 | . . . . . 6 |
98 | 94, 97 | eqtr4d 2206 | . . . . 5 |
99 | 75, 82, 84, 98 | geolim2 11475 | . . . 4 |
100 | breldmg 4817 | . . . 4 | |
101 | 64, 73, 99, 100 | mp3an2i 1337 | . . 3 |
102 | 33, 38 | eqeltrd 2247 | . . . 4 |
103 | 59, 2, 102 | iserex 11302 | . . 3 |
104 | 101, 103 | mpbid 146 | . 2 |
105 | 1, 3, 30, 31, 34, 35, 57, 63, 104 | isumle 11458 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 703 wceq 1348 wcel 2141 cvv 2730 wss 3121 cpr 3584 class class class wbr 3989 cmpt 4050 cdm 4611 wf 5194 cfv 5198 (class class class)co 5853 cc 7772 cr 7773 cc0 7774 c1 7775 caddc 7777 cmul 7779 clt 7954 cle 7955 cmin 8090 cdiv 8589 cn 8878 c2 8929 cn0 9135 cuz 9487 crp 9610 cseq 10401 cexp 10475 cabs 10961 cli 11241 csu 11316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-frec 6370 df-1o 6395 df-oadd 6399 df-er 6513 df-en 6719 df-dom 6720 df-fin 6721 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-ico 9851 df-fz 9966 df-fzo 10099 df-seqfrec 10402 df-exp 10476 df-ihash 10710 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-clim 11242 df-sumdc 11317 |
This theorem is referenced by: trilpolemgt1 14071 trilpolemeq1 14072 |
Copyright terms: Public domain | W3C validator |