ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapss Unicode version

Theorem mapss 6657
Description: Subset inheritance for set exponentiation. Theorem 99 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
mapss  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( A  ^m  C
)  C_  ( B  ^m  C ) )

Proof of Theorem mapss
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 elmapi 6636 . . . . . 6  |-  ( f  e.  ( A  ^m  C )  ->  f : C --> A )
21adantl 275 . . . . 5  |-  ( ( ( B  e.  V  /\  A  C_  B )  /\  f  e.  ( A  ^m  C ) )  ->  f : C
--> A )
3 simplr 520 . . . . 5  |-  ( ( ( B  e.  V  /\  A  C_  B )  /\  f  e.  ( A  ^m  C ) )  ->  A  C_  B
)
42, 3fssd 5350 . . . 4  |-  ( ( ( B  e.  V  /\  A  C_  B )  /\  f  e.  ( A  ^m  C ) )  ->  f : C
--> B )
5 simpll 519 . . . . 5  |-  ( ( ( B  e.  V  /\  A  C_  B )  /\  f  e.  ( A  ^m  C ) )  ->  B  e.  V )
6 elmapex 6635 . . . . . . 7  |-  ( f  e.  ( A  ^m  C )  ->  ( A  e.  _V  /\  C  e.  _V ) )
76simprd 113 . . . . . 6  |-  ( f  e.  ( A  ^m  C )  ->  C  e.  _V )
87adantl 275 . . . . 5  |-  ( ( ( B  e.  V  /\  A  C_  B )  /\  f  e.  ( A  ^m  C ) )  ->  C  e.  _V )
95, 8elmapd 6628 . . . 4  |-  ( ( ( B  e.  V  /\  A  C_  B )  /\  f  e.  ( A  ^m  C ) )  ->  ( f  e.  ( B  ^m  C
)  <->  f : C --> B ) )
104, 9mpbird 166 . . 3  |-  ( ( ( B  e.  V  /\  A  C_  B )  /\  f  e.  ( A  ^m  C ) )  ->  f  e.  ( B  ^m  C ) )
1110ex 114 . 2  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( f  e.  ( A  ^m  C )  ->  f  e.  ( B  ^m  C ) ) )
1211ssrdv 3148 1  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( A  ^m  C
)  C_  ( B  ^m  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2136   _Vcvv 2726    C_ wss 3116   -->wf 5184  (class class class)co 5842    ^m cmap 6614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-map 6616
This theorem is referenced by:  mapdom1g  6813  bj-charfunbi  13693
  Copyright terms: Public domain W3C validator