ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvcoapbr Unicode version

Theorem dvcoapbr 13031
Description: The chain rule for derivatives at a point. The  u #  C  -> 
( G `  u
) #  ( G `  C ) hypothesis constrains what functions work for  G. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 21-Dec-2023.)
Hypotheses
Ref Expression
dvco.f  |-  ( ph  ->  F : X --> CC )
dvco.x  |-  ( ph  ->  X  C_  S )
dvco.g  |-  ( ph  ->  G : Y --> X )
dvco.y  |-  ( ph  ->  Y  C_  T )
dvcoap.gap  |-  ( ph  ->  A. u  e.  Y  ( u #  C  ->  ( G `  u ) #  ( G `  C
) ) )
dvcobr.s  |-  ( ph  ->  S  C_  CC )
dvcobr.t  |-  ( ph  ->  T  C_  CC )
dvco.bf  |-  ( ph  ->  ( G `  C
) ( S  _D  F ) K )
dvco.bg  |-  ( ph  ->  C ( T  _D  G ) L )
dvcoap.j  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
Assertion
Ref Expression
dvcoapbr  |-  ( ph  ->  C ( T  _D  ( F  o.  G
) ) ( K  x.  L ) )
Distinct variable groups:    u, C    u, G    u, Y
Allowed substitution hints:    ph( u)    S( u)    T( u)    F( u)    J( u)    K( u)    L( u)    X( u)

Proof of Theorem dvcoapbr
Dummy variables  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvco.bg . . . 4  |-  ( ph  ->  C ( T  _D  G ) L )
2 eqid 2157 . . . . 5  |-  ( Jt  T )  =  ( Jt  T )
3 dvcoap.j . . . . 5  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
4 eqid 2157 . . . . 5  |-  ( z  e.  { w  e.  Y  |  w #  C }  |->  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) )  =  ( z  e.  {
w  e.  Y  |  w #  C }  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) )
5 dvcobr.t . . . . 5  |-  ( ph  ->  T  C_  CC )
6 dvco.g . . . . . 6  |-  ( ph  ->  G : Y --> X )
7 dvco.x . . . . . . 7  |-  ( ph  ->  X  C_  S )
8 dvcobr.s . . . . . . 7  |-  ( ph  ->  S  C_  CC )
97, 8sstrd 3138 . . . . . 6  |-  ( ph  ->  X  C_  CC )
106, 9fssd 5329 . . . . 5  |-  ( ph  ->  G : Y --> CC )
11 dvco.y . . . . 5  |-  ( ph  ->  Y  C_  T )
122, 3, 4, 5, 10, 11eldvap 13011 . . . 4  |-  ( ph  ->  ( C ( T  _D  G ) L  <-> 
( C  e.  ( ( int `  ( Jt  T ) ) `  Y )  /\  L  e.  ( ( z  e. 
{ w  e.  Y  |  w #  C }  |->  ( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) ) ) lim CC  C ) ) ) )
131, 12mpbid 146 . . 3  |-  ( ph  ->  ( C  e.  ( ( int `  ( Jt  T ) ) `  Y )  /\  L  e.  ( ( z  e. 
{ w  e.  Y  |  w #  C }  |->  ( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) ) ) lim CC  C ) ) )
1413simpld 111 . 2  |-  ( ph  ->  C  e.  ( ( int `  ( Jt  T ) ) `  Y
) )
15 dvco.f . . . . . . . 8  |-  ( ph  ->  F : X --> CC )
1615adantr 274 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  ->  F : X --> CC )
176adantr 274 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  ->  G : Y --> X )
18 elrabi 2865 . . . . . . . . 9  |-  ( z  e.  { w  e.  Y  |  w #  C }  ->  z  e.  Y
)
1918adantl 275 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  -> 
z  e.  Y )
2017, 19ffvelrnd 5600 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  -> 
( G `  z
)  e.  X )
2116, 20ffvelrnd 5600 . . . . . 6  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  -> 
( F `  ( G `  z )
)  e.  CC )
225, 10, 11dvbss 13014 . . . . . . . . . 10  |-  ( ph  ->  dom  ( T  _D  G )  C_  Y
)
23 cnex 7839 . . . . . . . . . . . . . 14  |-  CC  e.  _V
2423a1i 9 . . . . . . . . . . . . 13  |-  ( ph  ->  CC  e.  _V )
2524, 5ssexd 4104 . . . . . . . . . . . . 13  |-  ( ph  ->  T  e.  _V )
26 elpm2r 6604 . . . . . . . . . . . . 13  |-  ( ( ( CC  e.  _V  /\  T  e.  _V )  /\  ( G : Y --> CC  /\  Y  C_  T
) )  ->  G  e.  ( CC  ^pm  T
) )
2724, 25, 10, 11, 26syl22anc 1221 . . . . . . . . . . . 12  |-  ( ph  ->  G  e.  ( CC 
^pm  T ) )
28 reldvg 13008 . . . . . . . . . . . 12  |-  ( ( T  C_  CC  /\  G  e.  ( CC  ^pm  T
) )  ->  Rel  ( T  _D  G
) )
295, 27, 28syl2anc 409 . . . . . . . . . . 11  |-  ( ph  ->  Rel  ( T  _D  G ) )
30 releldm 4818 . . . . . . . . . . 11  |-  ( ( Rel  ( T  _D  G )  /\  C
( T  _D  G
) L )  ->  C  e.  dom  ( T  _D  G ) )
3129, 1, 30syl2anc 409 . . . . . . . . . 10  |-  ( ph  ->  C  e.  dom  ( T  _D  G ) )
3222, 31sseldd 3129 . . . . . . . . 9  |-  ( ph  ->  C  e.  Y )
3332adantr 274 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  ->  C  e.  Y )
3417, 33ffvelrnd 5600 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  -> 
( G `  C
)  e.  X )
3516, 34ffvelrnd 5600 . . . . . 6  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  -> 
( F `  ( G `  C )
)  e.  CC )
3621, 35subcld 8169 . . . . 5  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  -> 
( ( F `  ( G `  z ) )  -  ( F `
 ( G `  C ) ) )  e.  CC )
3710adantr 274 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  ->  G : Y --> CC )
3837, 19ffvelrnd 5600 . . . . . 6  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  -> 
( G `  z
)  e.  CC )
3937, 33ffvelrnd 5600 . . . . . 6  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  -> 
( G `  C
)  e.  CC )
4038, 39subcld 8169 . . . . 5  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  -> 
( ( G `  z )  -  ( G `  C )
)  e.  CC )
419adantr 274 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  ->  X  C_  CC )
4241, 20sseldd 3129 . . . . . 6  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  -> 
( G `  z
)  e.  CC )
4341, 34sseldd 3129 . . . . . 6  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  -> 
( G `  C
)  e.  CC )
44 breq1 3968 . . . . . . . . . 10  |-  ( w  =  z  ->  (
w #  C  <->  z #  C
) )
4544elrab 2868 . . . . . . . . 9  |-  ( z  e.  { w  e.  Y  |  w #  C } 
<->  ( z  e.  Y  /\  z #  C )
)
4645simprbi 273 . . . . . . . 8  |-  ( z  e.  { w  e.  Y  |  w #  C }  ->  z #  C )
4746adantl 275 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  -> 
z #  C )
48 breq1 3968 . . . . . . . . 9  |-  ( u  =  z  ->  (
u #  C  <->  z #  C
) )
49 fveq2 5465 . . . . . . . . . 10  |-  ( u  =  z  ->  ( G `  u )  =  ( G `  z ) )
5049breq1d 3975 . . . . . . . . 9  |-  ( u  =  z  ->  (
( G `  u
) #  ( G `  C )  <->  ( G `  z ) #  ( G `
 C ) ) )
5148, 50imbi12d 233 . . . . . . . 8  |-  ( u  =  z  ->  (
( u #  C  -> 
( G `  u
) #  ( G `  C ) )  <->  ( z #  C  ->  ( G `  z ) #  ( G `  C ) ) ) )
52 dvcoap.gap . . . . . . . . 9  |-  ( ph  ->  A. u  e.  Y  ( u #  C  ->  ( G `  u ) #  ( G `  C
) ) )
5352adantr 274 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  ->  A. u  e.  Y  ( u #  C  ->  ( G `  u ) #  ( G `  C
) ) )
5451, 53, 19rspcdva 2821 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  -> 
( z #  C  -> 
( G `  z
) #  ( G `  C ) ) )
5547, 54mpd 13 . . . . . 6  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  -> 
( G `  z
) #  ( G `  C ) )
5642, 43, 55subap0d 8502 . . . . 5  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  -> 
( ( G `  z )  -  ( G `  C )
) #  0 )
5736, 40, 56divclapd 8646 . . . 4  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  -> 
( ( ( F `
 ( G `  z ) )  -  ( F `  ( G `
 C ) ) )  /  ( ( G `  z )  -  ( G `  C ) ) )  e.  CC )
5811, 5sstrd 3138 . . . . 5  |-  ( ph  ->  Y  C_  CC )
5910, 58, 32dvlemap 13009 . . . 4  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  -> 
( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) )  e.  CC )
60 ssidd 3149 . . . 4  |-  ( ph  ->  CC  C_  CC )
613cntoptopon 12892 . . . . . 6  |-  J  e.  (TopOn `  CC )
62 txtopon 12622 . . . . . 6  |-  ( ( J  e.  (TopOn `  CC )  /\  J  e.  (TopOn `  CC )
)  ->  ( J  tX  J )  e.  (TopOn `  ( CC  X.  CC ) ) )
6361, 61, 62mp2an 423 . . . . 5  |-  ( J 
tX  J )  e.  (TopOn `  ( CC  X.  CC ) )
6463toponrestid 12379 . . . 4  |-  ( J 
tX  J )  =  ( ( J  tX  J )t  ( CC  X.  CC ) )
65 breq1 3968 . . . . . 6  |-  ( w  =  ( G `  z )  ->  (
w #  ( G `  C )  <->  ( G `  z ) #  ( G `
 C ) ) )
6665, 20, 55elrabd 2870 . . . . 5  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  -> 
( G `  z
)  e.  { w  e.  X  |  w #  ( G `  C ) } )
6715adantr 274 . . . . . . . 8  |-  ( (
ph  /\  y  e.  { w  e.  X  |  w #  ( G `  C
) } )  ->  F : X --> CC )
68 elrabi 2865 . . . . . . . . 9  |-  ( y  e.  { w  e.  X  |  w #  ( G `  C ) }  ->  y  e.  X )
6968adantl 275 . . . . . . . 8  |-  ( (
ph  /\  y  e.  { w  e.  X  |  w #  ( G `  C
) } )  -> 
y  e.  X )
7067, 69ffvelrnd 5600 . . . . . . 7  |-  ( (
ph  /\  y  e.  { w  e.  X  |  w #  ( G `  C
) } )  -> 
( F `  y
)  e.  CC )
716adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  { w  e.  X  |  w #  ( G `  C
) } )  ->  G : Y --> X )
7232adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  { w  e.  X  |  w #  ( G `  C
) } )  ->  C  e.  Y )
7371, 72ffvelrnd 5600 . . . . . . . 8  |-  ( (
ph  /\  y  e.  { w  e.  X  |  w #  ( G `  C
) } )  -> 
( G `  C
)  e.  X )
7467, 73ffvelrnd 5600 . . . . . . 7  |-  ( (
ph  /\  y  e.  { w  e.  X  |  w #  ( G `  C
) } )  -> 
( F `  ( G `  C )
)  e.  CC )
7570, 74subcld 8169 . . . . . 6  |-  ( (
ph  /\  y  e.  { w  e.  X  |  w #  ( G `  C
) } )  -> 
( ( F `  y )  -  ( F `  ( G `  C ) ) )  e.  CC )
769adantr 274 . . . . . . . 8  |-  ( (
ph  /\  y  e.  { w  e.  X  |  w #  ( G `  C
) } )  ->  X  C_  CC )
7776, 69sseldd 3129 . . . . . . 7  |-  ( (
ph  /\  y  e.  { w  e.  X  |  w #  ( G `  C
) } )  -> 
y  e.  CC )
7876, 73sseldd 3129 . . . . . . 7  |-  ( (
ph  /\  y  e.  { w  e.  X  |  w #  ( G `  C
) } )  -> 
( G `  C
)  e.  CC )
7977, 78subcld 8169 . . . . . 6  |-  ( (
ph  /\  y  e.  { w  e.  X  |  w #  ( G `  C
) } )  -> 
( y  -  ( G `  C )
)  e.  CC )
80 breq1 3968 . . . . . . . . . 10  |-  ( w  =  y  ->  (
w #  ( G `  C )  <->  y #  ( G `  C )
) )
8180elrab 2868 . . . . . . . . 9  |-  ( y  e.  { w  e.  X  |  w #  ( G `  C ) }  <->  ( y  e.  X  /\  y #  ( G `  C ) ) )
8281simprbi 273 . . . . . . . 8  |-  ( y  e.  { w  e.  X  |  w #  ( G `  C ) }  ->  y #  ( G `  C )
)
8382adantl 275 . . . . . . 7  |-  ( (
ph  /\  y  e.  { w  e.  X  |  w #  ( G `  C
) } )  -> 
y #  ( G `  C ) )
8477, 78, 83subap0d 8502 . . . . . 6  |-  ( (
ph  /\  y  e.  { w  e.  X  |  w #  ( G `  C
) } )  -> 
( y  -  ( G `  C )
) #  0 )
8575, 79, 84divclapd 8646 . . . . 5  |-  ( (
ph  /\  y  e.  { w  e.  X  |  w #  ( G `  C
) } )  -> 
( ( ( F `
 y )  -  ( F `  ( G `
 C ) ) )  /  ( y  -  ( G `  C ) ) )  e.  CC )
86 limcresi 12995 . . . . . . 7  |-  ( G lim
CC  C )  C_  ( ( G  |`  { w  e.  Y  |  w #  C }
) lim CC  C )
876feqmptd 5518 . . . . . . . . . 10  |-  ( ph  ->  G  =  ( z  e.  Y  |->  ( G `
 z ) ) )
8887reseq1d 4862 . . . . . . . . 9  |-  ( ph  ->  ( G  |`  { w  e.  Y  |  w #  C } )  =  ( ( z  e.  Y  |->  ( G `  z
) )  |`  { w  e.  Y  |  w #  C } ) )
89 ssrab2 3213 . . . . . . . . . 10  |-  { w  e.  Y  |  w #  C }  C_  Y
90 resmpt 4911 . . . . . . . . . 10  |-  ( { w  e.  Y  |  w #  C }  C_  Y  ->  ( ( z  e.  Y  |->  ( G `  z ) )  |`  { w  e.  Y  |  w #  C }
)  =  ( z  e.  { w  e.  Y  |  w #  C }  |->  ( G `  z ) ) )
9189, 90ax-mp 5 . . . . . . . . 9  |-  ( ( z  e.  Y  |->  ( G `  z ) )  |`  { w  e.  Y  |  w #  C } )  =  ( z  e.  { w  e.  Y  |  w #  C }  |->  ( G `
 z ) )
9288, 91eqtrdi 2206 . . . . . . . 8  |-  ( ph  ->  ( G  |`  { w  e.  Y  |  w #  C } )  =  ( z  e.  { w  e.  Y  |  w #  C }  |->  ( G `
 z ) ) )
9392oveq1d 5833 . . . . . . 7  |-  ( ph  ->  ( ( G  |`  { w  e.  Y  |  w #  C }
) lim CC  C )  =  ( ( z  e.  { w  e.  Y  |  w #  C }  |->  ( G `  z ) ) lim CC  C ) )
9486, 93sseqtrid 3178 . . . . . 6  |-  ( ph  ->  ( G lim CC  C
)  C_  ( (
z  e.  { w  e.  Y  |  w #  C }  |->  ( G `
 z ) ) lim
CC  C ) )
95 eqid 2157 . . . . . . . . . 10  |-  ( Jt  Y )  =  ( Jt  Y )
9695, 3dvcnp2cntop 13023 . . . . . . . . 9  |-  ( ( ( T  C_  CC  /\  G : Y --> CC  /\  Y  C_  T )  /\  C  e.  dom  ( T  _D  G ) )  ->  G  e.  ( ( ( Jt  Y )  CnP  J ) `  C ) )
975, 10, 11, 31, 96syl31anc 1223 . . . . . . . 8  |-  ( ph  ->  G  e.  ( ( ( Jt  Y )  CnP  J
) `  C )
)
983, 95cnplimccntop 12999 . . . . . . . . 9  |-  ( ( Y  C_  CC  /\  C  e.  Y )  ->  ( G  e.  ( (
( Jt  Y )  CnP  J
) `  C )  <->  ( G : Y --> CC  /\  ( G `  C )  e.  ( G lim CC  C ) ) ) )
9958, 32, 98syl2anc 409 . . . . . . . 8  |-  ( ph  ->  ( G  e.  ( ( ( Jt  Y )  CnP  J ) `  C )  <->  ( G : Y --> CC  /\  ( G `  C )  e.  ( G lim CC  C
) ) ) )
10097, 99mpbid 146 . . . . . . 7  |-  ( ph  ->  ( G : Y --> CC  /\  ( G `  C )  e.  ( G lim CC  C ) ) )
101100simprd 113 . . . . . 6  |-  ( ph  ->  ( G `  C
)  e.  ( G lim
CC  C ) )
10294, 101sseldd 3129 . . . . 5  |-  ( ph  ->  ( G `  C
)  e.  ( ( z  e.  { w  e.  Y  |  w #  C }  |->  ( G `
 z ) ) lim
CC  C ) )
103 dvco.bf . . . . . . 7  |-  ( ph  ->  ( G `  C
) ( S  _D  F ) K )
104 eqid 2157 . . . . . . . 8  |-  ( Jt  S )  =  ( Jt  S )
105 eqid 2157 . . . . . . . 8  |-  ( y  e.  { w  e.  X  |  w #  ( G `  C ) }  |->  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  (
y  -  ( G `
 C ) ) ) )  =  ( y  e.  { w  e.  X  |  w #  ( G `  C ) }  |->  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  (
y  -  ( G `
 C ) ) ) )
106104, 3, 105, 8, 15, 7eldvap 13011 . . . . . . 7  |-  ( ph  ->  ( ( G `  C ) ( S  _D  F ) K  <-> 
( ( G `  C )  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  K  e.  ( ( y  e. 
{ w  e.  X  |  w #  ( G `  C ) }  |->  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  ( y  -  ( G `  C ) ) ) ) lim CC  ( G `  C ) ) ) ) )
107103, 106mpbid 146 . . . . . 6  |-  ( ph  ->  ( ( G `  C )  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  K  e.  ( ( y  e. 
{ w  e.  X  |  w #  ( G `  C ) }  |->  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  ( y  -  ( G `  C ) ) ) ) lim CC  ( G `  C ) ) ) )
108107simprd 113 . . . . 5  |-  ( ph  ->  K  e.  ( ( y  e.  { w  e.  X  |  w #  ( G `  C ) }  |->  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  (
y  -  ( G `
 C ) ) ) ) lim CC  ( G `  C )
) )
109 fveq2 5465 . . . . . . 7  |-  ( y  =  ( G `  z )  ->  ( F `  y )  =  ( F `  ( G `  z ) ) )
110109oveq1d 5833 . . . . . 6  |-  ( y  =  ( G `  z )  ->  (
( F `  y
)  -  ( F `
 ( G `  C ) ) )  =  ( ( F `
 ( G `  z ) )  -  ( F `  ( G `
 C ) ) ) )
111 oveq1 5825 . . . . . 6  |-  ( y  =  ( G `  z )  ->  (
y  -  ( G `
 C ) )  =  ( ( G `
 z )  -  ( G `  C ) ) )
112110, 111oveq12d 5836 . . . . 5  |-  ( y  =  ( G `  z )  ->  (
( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  ( y  -  ( G `  C ) ) )  =  ( ( ( F `  ( G `  z ) )  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) ) )
11366, 85, 102, 108, 112limccoap 13007 . . . 4  |-  ( ph  ->  K  e.  ( ( z  e.  { w  e.  Y  |  w #  C }  |->  ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) ) ) lim CC  C ) )
11413simprd 113 . . . 4  |-  ( ph  ->  L  e.  ( ( z  e.  { w  e.  Y  |  w #  C }  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) )
1153mulcncntop 12914 . . . . 5  |-  x.  e.  ( ( J  tX  J )  Cn  J
)
1168, 15, 7dvcl 13012 . . . . . . 7  |-  ( (
ph  /\  ( G `  C ) ( S  _D  F ) K )  ->  K  e.  CC )
117103, 116mpdan 418 . . . . . 6  |-  ( ph  ->  K  e.  CC )
1185, 10, 11dvcl 13012 . . . . . . 7  |-  ( (
ph  /\  C ( T  _D  G ) L )  ->  L  e.  CC )
1191, 118mpdan 418 . . . . . 6  |-  ( ph  ->  L  e.  CC )
120117, 119opelxpd 4616 . . . . 5  |-  ( ph  -> 
<. K ,  L >.  e.  ( CC  X.  CC ) )
12163toponunii 12375 . . . . . 6  |-  ( CC 
X.  CC )  = 
U. ( J  tX  J )
122121cncnpi 12588 . . . . 5  |-  ( (  x.  e.  ( ( J  tX  J )  Cn  J )  /\  <. K ,  L >.  e.  ( CC  X.  CC ) )  ->  x.  e.  ( ( ( J 
tX  J )  CnP 
J ) `  <. K ,  L >. )
)
123115, 120, 122sylancr 411 . . . 4  |-  ( ph  ->  x.  e.  ( ( ( J  tX  J
)  CnP  J ) `  <. K ,  L >. ) )
12457, 59, 60, 60, 3, 64, 113, 114, 123limccnp2cntop 13006 . . 3  |-  ( ph  ->  ( K  x.  L
)  e.  ( ( z  e.  { w  e.  Y  |  w #  C }  |->  ( ( ( ( F `  ( G `  z ) )  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) )  x.  (
( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) ) ) lim CC  C
) )
12542, 43subcld 8169 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  -> 
( ( G `  z )  -  ( G `  C )
)  e.  CC )
12658adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  ->  Y  C_  CC )
127126, 19sseldd 3129 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  -> 
z  e.  CC )
128126, 33sseldd 3129 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  ->  C  e.  CC )
129127, 128subcld 8169 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  -> 
( z  -  C
)  e.  CC )
130127, 128, 47subap0d 8502 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  -> 
( z  -  C
) #  0 )
13136, 125, 129, 56, 130dmdcanap2d 8677 . . . . . 6  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  -> 
( ( ( ( F `  ( G `
 z ) )  -  ( F `  ( G `  C ) ) )  /  (
( G `  z
)  -  ( G `
 C ) ) )  x.  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) )  =  ( ( ( F `  ( G `
 z ) )  -  ( F `  ( G `  C ) ) )  /  (
z  -  C ) ) )
132 fvco3 5536 . . . . . . . . 9  |-  ( ( G : Y --> X  /\  z  e.  Y )  ->  ( ( F  o.  G ) `  z
)  =  ( F `
 ( G `  z ) ) )
13317, 19, 132syl2anc 409 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  -> 
( ( F  o.  G ) `  z
)  =  ( F `
 ( G `  z ) ) )
134 fvco3 5536 . . . . . . . . 9  |-  ( ( G : Y --> X  /\  C  e.  Y )  ->  ( ( F  o.  G ) `  C
)  =  ( F `
 ( G `  C ) ) )
13517, 33, 134syl2anc 409 . . . . . . . 8  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  -> 
( ( F  o.  G ) `  C
)  =  ( F `
 ( G `  C ) ) )
136133, 135oveq12d 5836 . . . . . . 7  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  -> 
( ( ( F  o.  G ) `  z )  -  (
( F  o.  G
) `  C )
)  =  ( ( F `  ( G `
 z ) )  -  ( F `  ( G `  C ) ) ) )
137136oveq1d 5833 . . . . . 6  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  -> 
( ( ( ( F  o.  G ) `
 z )  -  ( ( F  o.  G ) `  C
) )  /  (
z  -  C ) )  =  ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( z  -  C ) ) )
138131, 137eqtr4d 2193 . . . . 5  |-  ( (
ph  /\  z  e.  { w  e.  Y  |  w #  C } )  -> 
( ( ( ( F `  ( G `
 z ) )  -  ( F `  ( G `  C ) ) )  /  (
( G `  z
)  -  ( G `
 C ) ) )  x.  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) )  =  ( ( ( ( F  o.  G
) `  z )  -  ( ( F  o.  G ) `  C ) )  / 
( z  -  C
) ) )
139138mpteq2dva 4054 . . . 4  |-  ( ph  ->  ( z  e.  {
w  e.  Y  |  w #  C }  |->  ( ( ( ( F `  ( G `  z ) )  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) )  x.  (
( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) ) )  =  ( z  e.  { w  e.  Y  |  w #  C }  |->  ( ( ( ( F  o.  G ) `  z
)  -  ( ( F  o.  G ) `
 C ) )  /  ( z  -  C ) ) ) )
140139oveq1d 5833 . . 3  |-  ( ph  ->  ( ( z  e. 
{ w  e.  Y  |  w #  C }  |->  ( ( ( ( F `  ( G `
 z ) )  -  ( F `  ( G `  C ) ) )  /  (
( G `  z
)  -  ( G `
 C ) ) )  x.  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) ) ) lim CC  C )  =  ( ( z  e.  { w  e.  Y  |  w #  C }  |->  ( ( ( ( F  o.  G
) `  z )  -  ( ( F  o.  G ) `  C ) )  / 
( z  -  C
) ) ) lim CC  C ) )
141124, 140eleqtrd 2236 . 2  |-  ( ph  ->  ( K  x.  L
)  e.  ( ( z  e.  { w  e.  Y  |  w #  C }  |->  ( ( ( ( F  o.  G ) `  z
)  -  ( ( F  o.  G ) `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) )
142 eqid 2157 . . 3  |-  ( z  e.  { w  e.  Y  |  w #  C }  |->  ( ( ( ( F  o.  G
) `  z )  -  ( ( F  o.  G ) `  C ) )  / 
( z  -  C
) ) )  =  ( z  e.  {
w  e.  Y  |  w #  C }  |->  ( ( ( ( F  o.  G ) `  z
)  -  ( ( F  o.  G ) `
 C ) )  /  ( z  -  C ) ) )
143 fco 5332 . . . 4  |-  ( ( F : X --> CC  /\  G : Y --> X )  ->  ( F  o.  G ) : Y --> CC )
14415, 6, 143syl2anc 409 . . 3  |-  ( ph  ->  ( F  o.  G
) : Y --> CC )
1452, 3, 142, 5, 144, 11eldvap 13011 . 2  |-  ( ph  ->  ( C ( T  _D  ( F  o.  G ) ) ( K  x.  L )  <-> 
( C  e.  ( ( int `  ( Jt  T ) ) `  Y )  /\  ( K  x.  L )  e.  ( ( z  e. 
{ w  e.  Y  |  w #  C }  |->  ( ( ( ( F  o.  G ) `
 z )  -  ( ( F  o.  G ) `  C
) )  /  (
z  -  C ) ) ) lim CC  C
) ) ) )
14614, 141, 145mpbir2and 929 1  |-  ( ph  ->  C ( T  _D  ( F  o.  G
) ) ( K  x.  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   A.wral 2435   {crab 2439   _Vcvv 2712    C_ wss 3102   <.cop 3563   class class class wbr 3965    |-> cmpt 4025    X. cxp 4581   dom cdm 4583    |` cres 4585    o. ccom 4587   Rel wrel 4588   -->wf 5163   ` cfv 5167  (class class class)co 5818    ^pm cpm 6587   CCcc 7713    x. cmul 7720    - cmin 8029   # cap 8439    / cdiv 8528   abscabs 10879   ↾t crest 12311   MetOpencmopn 12345  TopOnctopon 12368   intcnt 12453    Cn ccn 12545    CnP ccnp 12546    tX ctx 12612   lim CC climc 12983    _D cdv 12984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833  ax-arch 7834  ax-caucvg 7835  ax-addf 7837  ax-mulf 7838
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-ilim 4328  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-isom 5176  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-frec 6332  df-map 6588  df-pm 6589  df-sup 6920  df-inf 6921  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-inn 8817  df-2 8875  df-3 8876  df-4 8877  df-n0 9074  df-z 9151  df-uz 9423  df-q 9511  df-rp 9543  df-xneg 9661  df-xadd 9662  df-seqfrec 10327  df-exp 10401  df-cj 10724  df-re 10725  df-im 10726  df-rsqrt 10880  df-abs 10881  df-rest 12313  df-topgen 12332  df-psmet 12347  df-xmet 12348  df-met 12349  df-bl 12350  df-mopn 12351  df-top 12356  df-topon 12369  df-bases 12401  df-ntr 12456  df-cn 12548  df-cnp 12549  df-tx 12613  df-cncf 12918  df-limced 12985  df-dvap 12986
This theorem is referenced by:  dvef  13048
  Copyright terms: Public domain W3C validator