ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemh Unicode version

Theorem ennnfonelemh 11812
Description: Lemma for ennnfone 11833. (Contributed by Jim Kingdon, 8-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
Assertion
Ref Expression
ennnfonelemh  |-  ( ph  ->  H : NN0 --> ( A 
^pm  om ) )
Distinct variable groups:    A, j, x, y    x, F, y   
j, G    j, J    x, N    ph, j, x, y
Allowed substitution hints:    ph( k, n)    A( k, n)    F( j, k, n)    G( x, y, k, n)    H( x, y, j, k, n)    J( x, y, k, n)    N( y,
j, k, n)

Proof of Theorem ennnfonelemh
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemh.dceq . . . . 5  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2 ennnfonelemh.f . . . . 5  |-  ( ph  ->  F : om -onto-> A
)
3 ennnfonelemh.ne . . . . 5  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
4 ennnfonelemh.g . . . . 5  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
5 ennnfonelemh.n . . . . 5  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
6 ennnfonelemh.j . . . . 5  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
7 ennnfonelemh.h . . . . 5  |-  H  =  seq 0 ( G ,  J )
81, 2, 3, 4, 5, 6, 7ennnfonelemj0 11809 . . . 4  |-  ( ph  ->  ( J `  0
)  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
91, 2, 3, 4, 5, 6, 7ennnfonelemg 11811 . . . 4  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  (
f G j )  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
10 nn0uz 9309 . . . 4  |-  NN0  =  ( ZZ>= `  0 )
11 0zd 9017 . . . 4  |-  ( ph  ->  0  e.  ZZ )
121, 2, 3, 4, 5, 6, 7ennnfonelemjn 11810 . . . 4  |-  ( (
ph  /\  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )  ->  ( J `  f )  e.  om )
138, 9, 10, 11, 12seqf2 10177 . . 3  |-  ( ph  ->  seq 0 ( G ,  J ) : NN0 --> { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
14 ssrab2 3150 . . . 4  |-  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  C_  ( A  ^pm  om )
1514a1i 9 . . 3  |-  ( ph  ->  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  C_  ( A  ^pm  om ) )
1613, 15fssd 5253 . 2  |-  ( ph  ->  seq 0 ( G ,  J ) : NN0 --> ( A  ^pm  om ) )
177feq1i 5233 . 2  |-  ( H : NN0 --> ( A 
^pm  om )  <->  seq 0
( G ,  J
) : NN0 --> ( A 
^pm  om ) )
1816, 17sylibr 133 1  |-  ( ph  ->  H : NN0 --> ( A 
^pm  om ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 802    = wceq 1314    e. wcel 1463    =/= wne 2283   A.wral 2391   E.wrex 2392   {crab 2395    u. cun 3037    C_ wss 3039   (/)c0 3331   ifcif 3442   {csn 3495   <.cop 3498    |-> cmpt 3957   suc csuc 4255   omcom 4472   `'ccnv 4506   dom cdm 4507   "cima 4510   -->wf 5087   -onto->wfo 5089   ` cfv 5091  (class class class)co 5740    e. cmpo 5742  freccfrec 6253    ^pm cpm 6509   0cc0 7584   1c1 7585    + caddc 7587    - cmin 7897   NN0cn0 8928   ZZcz 9005    seqcseq 10158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-addcom 7684  ax-addass 7686  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-0id 7692  ax-rnegex 7693  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-ltadd 7700
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-pm 6511  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-inn 8678  df-n0 8929  df-z 9006  df-uz 9276  df-seqfrec 10159
This theorem is referenced by:  ennnfonelemp1  11814  ennnfonelemrnh  11824  ennnfonelemfun  11825  ennnfonelemf1  11826
  Copyright terms: Public domain W3C validator