ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemh Unicode version

Theorem ennnfonelemh 12175
Description: Lemma for ennnfone 12196. (Contributed by Jim Kingdon, 8-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
Assertion
Ref Expression
ennnfonelemh  |-  ( ph  ->  H : NN0 --> ( A 
^pm  om ) )
Distinct variable groups:    A, j, x, y    x, F, y   
j, G    j, J    x, N    ph, j, x, y
Allowed substitution hints:    ph( k, n)    A( k, n)    F( j, k, n)    G( x, y, k, n)    H( x, y, j, k, n)    J( x, y, k, n)    N( y,
j, k, n)

Proof of Theorem ennnfonelemh
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemh.dceq . . . . 5  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2 ennnfonelemh.f . . . . 5  |-  ( ph  ->  F : om -onto-> A
)
3 ennnfonelemh.ne . . . . 5  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
4 ennnfonelemh.g . . . . 5  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
5 ennnfonelemh.n . . . . 5  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
6 ennnfonelemh.j . . . . 5  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
7 ennnfonelemh.h . . . . 5  |-  H  =  seq 0 ( G ,  J )
81, 2, 3, 4, 5, 6, 7ennnfonelemj0 12172 . . . 4  |-  ( ph  ->  ( J `  0
)  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
91, 2, 3, 4, 5, 6, 7ennnfonelemg 12174 . . . 4  |-  ( (
ph  /\  ( f  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  /\  j  e.  om ) )  ->  (
f G j )  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
10 nn0uz 9474 . . . 4  |-  NN0  =  ( ZZ>= `  0 )
11 0zd 9180 . . . 4  |-  ( ph  ->  0  e.  ZZ )
121, 2, 3, 4, 5, 6, 7ennnfonelemjn 12173 . . . 4  |-  ( (
ph  /\  f  e.  ( ZZ>= `  ( 0  +  1 ) ) )  ->  ( J `  f )  e.  om )
138, 9, 10, 11, 12seqf2 10367 . . 3  |-  ( ph  ->  seq 0 ( G ,  J ) : NN0 --> { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
14 ssrab2 3213 . . . 4  |-  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  C_  ( A  ^pm  om )
1514a1i 9 . . 3  |-  ( ph  ->  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om }  C_  ( A  ^pm  om ) )
1613, 15fssd 5333 . 2  |-  ( ph  ->  seq 0 ( G ,  J ) : NN0 --> ( A  ^pm  om ) )
177feq1i 5313 . 2  |-  ( H : NN0 --> ( A 
^pm  om )  <->  seq 0
( G ,  J
) : NN0 --> ( A 
^pm  om ) )
1816, 17sylibr 133 1  |-  ( ph  ->  H : NN0 --> ( A 
^pm  om ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 820    = wceq 1335    e. wcel 2128    =/= wne 2327   A.wral 2435   E.wrex 2436   {crab 2439    u. cun 3100    C_ wss 3102   (/)c0 3394   ifcif 3505   {csn 3560   <.cop 3563    |-> cmpt 4026   suc csuc 4326   omcom 4550   `'ccnv 4586   dom cdm 4587   "cima 4590   -->wf 5167   -onto->wfo 5169   ` cfv 5171  (class class class)co 5825    e. cmpo 5827  freccfrec 6338    ^pm cpm 6595   0cc0 7733   1c1 7734    + caddc 7736    - cmin 8047   NN0cn0 9091   ZZcz 9168    seqcseq 10348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4080  ax-sep 4083  ax-nul 4091  ax-pow 4136  ax-pr 4170  ax-un 4394  ax-setind 4497  ax-iinf 4548  ax-cnex 7824  ax-resscn 7825  ax-1cn 7826  ax-1re 7827  ax-icn 7828  ax-addcl 7829  ax-addrcl 7830  ax-mulcl 7831  ax-addcom 7833  ax-addass 7835  ax-distr 7837  ax-i2m1 7838  ax-0lt1 7839  ax-0id 7841  ax-rnegex 7842  ax-cnre 7844  ax-pre-ltirr 7845  ax-pre-ltwlin 7846  ax-pre-lttrn 7847  ax-pre-ltadd 7849
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-int 3809  df-iun 3852  df-br 3967  df-opab 4027  df-mpt 4028  df-tr 4064  df-id 4254  df-iord 4327  df-on 4329  df-ilim 4330  df-suc 4332  df-iom 4551  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600  df-iota 5136  df-fun 5173  df-fn 5174  df-f 5175  df-f1 5176  df-fo 5177  df-f1o 5178  df-fv 5179  df-riota 5781  df-ov 5828  df-oprab 5829  df-mpo 5830  df-1st 6089  df-2nd 6090  df-recs 6253  df-frec 6339  df-pm 6597  df-pnf 7915  df-mnf 7916  df-xr 7917  df-ltxr 7918  df-le 7919  df-sub 8049  df-neg 8050  df-inn 8835  df-n0 9092  df-z 9169  df-uz 9441  df-seqfrec 10349
This theorem is referenced by:  ennnfonelemp1  12177  ennnfonelemrnh  12187  ennnfonelemfun  12188  ennnfonelemf1  12189
  Copyright terms: Public domain W3C validator