ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnvres2 Unicode version

Theorem funcnvres2 5363
Description: The converse of a restriction of the converse of a function equals the function restricted to the image of its converse. (Contributed by NM, 4-May-2005.)
Assertion
Ref Expression
funcnvres2  |-  ( Fun 
F  ->  `' ( `' F  |`  A )  =  ( F  |`  ( `' F " A ) ) )

Proof of Theorem funcnvres2
StepHypRef Expression
1 funcnvcnv 5347 . . 3  |-  ( Fun 
F  ->  Fun  `' `' F )
2 funcnvres 5361 . . 3  |-  ( Fun  `' `' F  ->  `' ( `' F  |`  A )  =  ( `' `' F  |`  ( `' F " A ) ) )
31, 2syl 14 . 2  |-  ( Fun 
F  ->  `' ( `' F  |`  A )  =  ( `' `' F  |`  ( `' F " A ) ) )
4 funrel 5302 . . . 4  |-  ( Fun 
F  ->  Rel  F )
5 dfrel2 5147 . . . 4  |-  ( Rel 
F  <->  `' `' F  =  F
)
64, 5sylib 122 . . 3  |-  ( Fun 
F  ->  `' `' F  =  F )
76reseq1d 4972 . 2  |-  ( Fun 
F  ->  ( `' `' F  |`  ( `' F " A ) )  =  ( F  |`  ( `' F " A ) ) )
83, 7eqtrd 2239 1  |-  ( Fun 
F  ->  `' ( `' F  |`  A )  =  ( F  |`  ( `' F " A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   `'ccnv 4687    |` cres 4690   "cima 4691   Rel wrel 4693   Fun wfun 5279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4055  df-opab 4117  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5287
This theorem is referenced by:  funimacnv  5364  foimacnv  5557
  Copyright terms: Public domain W3C validator