ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnvres2 Unicode version

Theorem funcnvres2 5263
Description: The converse of a restriction of the converse of a function equals the function restricted to the image of its converse. (Contributed by NM, 4-May-2005.)
Assertion
Ref Expression
funcnvres2  |-  ( Fun 
F  ->  `' ( `' F  |`  A )  =  ( F  |`  ( `' F " A ) ) )

Proof of Theorem funcnvres2
StepHypRef Expression
1 funcnvcnv 5247 . . 3  |-  ( Fun 
F  ->  Fun  `' `' F )
2 funcnvres 5261 . . 3  |-  ( Fun  `' `' F  ->  `' ( `' F  |`  A )  =  ( `' `' F  |`  ( `' F " A ) ) )
31, 2syl 14 . 2  |-  ( Fun 
F  ->  `' ( `' F  |`  A )  =  ( `' `' F  |`  ( `' F " A ) ) )
4 funrel 5205 . . . 4  |-  ( Fun 
F  ->  Rel  F )
5 dfrel2 5054 . . . 4  |-  ( Rel 
F  <->  `' `' F  =  F
)
64, 5sylib 121 . . 3  |-  ( Fun 
F  ->  `' `' F  =  F )
76reseq1d 4883 . 2  |-  ( Fun 
F  ->  ( `' `' F  |`  ( `' F " A ) )  =  ( F  |`  ( `' F " A ) ) )
83, 7eqtrd 2198 1  |-  ( Fun 
F  ->  `' ( `' F  |`  A )  =  ( F  |`  ( `' F " A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   `'ccnv 4603    |` cres 4606   "cima 4607   Rel wrel 4609   Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-fun 5190
This theorem is referenced by:  funimacnv  5264  foimacnv  5450
  Copyright terms: Public domain W3C validator