ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnvres2 Unicode version

Theorem funcnvres2 5349
Description: The converse of a restriction of the converse of a function equals the function restricted to the image of its converse. (Contributed by NM, 4-May-2005.)
Assertion
Ref Expression
funcnvres2  |-  ( Fun 
F  ->  `' ( `' F  |`  A )  =  ( F  |`  ( `' F " A ) ) )

Proof of Theorem funcnvres2
StepHypRef Expression
1 funcnvcnv 5333 . . 3  |-  ( Fun 
F  ->  Fun  `' `' F )
2 funcnvres 5347 . . 3  |-  ( Fun  `' `' F  ->  `' ( `' F  |`  A )  =  ( `' `' F  |`  ( `' F " A ) ) )
31, 2syl 14 . 2  |-  ( Fun 
F  ->  `' ( `' F  |`  A )  =  ( `' `' F  |`  ( `' F " A ) ) )
4 funrel 5288 . . . 4  |-  ( Fun 
F  ->  Rel  F )
5 dfrel2 5133 . . . 4  |-  ( Rel 
F  <->  `' `' F  =  F
)
64, 5sylib 122 . . 3  |-  ( Fun 
F  ->  `' `' F  =  F )
76reseq1d 4958 . 2  |-  ( Fun 
F  ->  ( `' `' F  |`  ( `' F " A ) )  =  ( F  |`  ( `' F " A ) ) )
83, 7eqtrd 2238 1  |-  ( Fun 
F  ->  `' ( `' F  |`  A )  =  ( F  |`  ( `' F " A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   `'ccnv 4674    |` cres 4677   "cima 4678   Rel wrel 4680   Fun wfun 5265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-fun 5273
This theorem is referenced by:  funimacnv  5350  foimacnv  5540
  Copyright terms: Public domain W3C validator