ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnvres2 GIF version

Theorem funcnvres2 5283
Description: The converse of a restriction of the converse of a function equals the function restricted to the image of its converse. (Contributed by NM, 4-May-2005.)
Assertion
Ref Expression
funcnvres2 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))

Proof of Theorem funcnvres2
StepHypRef Expression
1 funcnvcnv 5267 . . 3 (Fun 𝐹 → Fun 𝐹)
2 funcnvres 5281 . . 3 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
31, 2syl 14 . 2 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
4 funrel 5225 . . . 4 (Fun 𝐹 → Rel 𝐹)
5 dfrel2 5071 . . . 4 (Rel 𝐹𝐹 = 𝐹)
64, 5sylib 122 . . 3 (Fun 𝐹𝐹 = 𝐹)
76reseq1d 4899 . 2 (Fun 𝐹 → (𝐹 ↾ (𝐹𝐴)) = (𝐹 ↾ (𝐹𝐴)))
83, 7eqtrd 2208 1 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  ccnv 4619  cres 4622  cima 4623  Rel wrel 4625  Fun wfun 5202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-fun 5210
This theorem is referenced by:  funimacnv  5284  foimacnv  5471
  Copyright terms: Public domain W3C validator