![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funcnvres2 | GIF version |
Description: The converse of a restriction of the converse of a function equals the function restricted to the image of its converse. (Contributed by NM, 4-May-2005.) |
Ref | Expression |
---|---|
funcnvres2 | ⊢ (Fun 𝐹 → ◡(◡𝐹 ↾ 𝐴) = (𝐹 ↾ (◡𝐹 “ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcnvcnv 5277 | . . 3 ⊢ (Fun 𝐹 → Fun ◡◡𝐹) | |
2 | funcnvres 5291 | . . 3 ⊢ (Fun ◡◡𝐹 → ◡(◡𝐹 ↾ 𝐴) = (◡◡𝐹 ↾ (◡𝐹 “ 𝐴))) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (Fun 𝐹 → ◡(◡𝐹 ↾ 𝐴) = (◡◡𝐹 ↾ (◡𝐹 “ 𝐴))) |
4 | funrel 5235 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
5 | dfrel2 5081 | . . . 4 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
6 | 4, 5 | sylib 122 | . . 3 ⊢ (Fun 𝐹 → ◡◡𝐹 = 𝐹) |
7 | 6 | reseq1d 4908 | . 2 ⊢ (Fun 𝐹 → (◡◡𝐹 ↾ (◡𝐹 “ 𝐴)) = (𝐹 ↾ (◡𝐹 “ 𝐴))) |
8 | 3, 7 | eqtrd 2210 | 1 ⊢ (Fun 𝐹 → ◡(◡𝐹 ↾ 𝐴) = (𝐹 ↾ (◡𝐹 “ 𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ◡ccnv 4627 ↾ cres 4630 “ cima 4631 Rel wrel 4633 Fun wfun 5212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-fun 5220 |
This theorem is referenced by: funimacnv 5294 foimacnv 5481 |
Copyright terms: Public domain | W3C validator |