| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funcnvres2 | GIF version | ||
| Description: The converse of a restriction of the converse of a function equals the function restricted to the image of its converse. (Contributed by NM, 4-May-2005.) |
| Ref | Expression |
|---|---|
| funcnvres2 | ⊢ (Fun 𝐹 → ◡(◡𝐹 ↾ 𝐴) = (𝐹 ↾ (◡𝐹 “ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcnvcnv 5376 | . . 3 ⊢ (Fun 𝐹 → Fun ◡◡𝐹) | |
| 2 | funcnvres 5390 | . . 3 ⊢ (Fun ◡◡𝐹 → ◡(◡𝐹 ↾ 𝐴) = (◡◡𝐹 ↾ (◡𝐹 “ 𝐴))) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (Fun 𝐹 → ◡(◡𝐹 ↾ 𝐴) = (◡◡𝐹 ↾ (◡𝐹 “ 𝐴))) |
| 4 | funrel 5331 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 5 | dfrel2 5175 | . . . 4 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
| 6 | 4, 5 | sylib 122 | . . 3 ⊢ (Fun 𝐹 → ◡◡𝐹 = 𝐹) |
| 7 | 6 | reseq1d 5000 | . 2 ⊢ (Fun 𝐹 → (◡◡𝐹 ↾ (◡𝐹 “ 𝐴)) = (𝐹 ↾ (◡𝐹 “ 𝐴))) |
| 8 | 3, 7 | eqtrd 2262 | 1 ⊢ (Fun 𝐹 → ◡(◡𝐹 ↾ 𝐴) = (𝐹 ↾ (◡𝐹 “ 𝐴))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ◡ccnv 4715 ↾ cres 4718 “ cima 4719 Rel wrel 4721 Fun wfun 5308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-fun 5316 |
| This theorem is referenced by: funimacnv 5393 foimacnv 5586 |
| Copyright terms: Public domain | W3C validator |