![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funfvima2 | GIF version |
Description: A function's value in an included preimage belongs to the image. (Contributed by NM, 3-Feb-1997.) |
Ref | Expression |
---|---|
funfvima2 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3174 | . . 3 ⊢ (𝐴 ⊆ dom 𝐹 → (𝐵 ∈ 𝐴 → 𝐵 ∈ dom 𝐹)) | |
2 | funfvima 5791 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) | |
3 | 2 | ex 115 | . . . . 5 ⊢ (Fun 𝐹 → (𝐵 ∈ dom 𝐹 → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
4 | 3 | com23 78 | . . . 4 ⊢ (Fun 𝐹 → (𝐵 ∈ 𝐴 → (𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
5 | 4 | a2d 26 | . . 3 ⊢ (Fun 𝐹 → ((𝐵 ∈ 𝐴 → 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
6 | 1, 5 | syl5 32 | . 2 ⊢ (Fun 𝐹 → (𝐴 ⊆ dom 𝐹 → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
7 | 6 | imp 124 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 ⊆ wss 3154 dom cdm 4660 “ cima 4663 Fun wfun 5249 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 |
This theorem is referenced by: fnfvima 5794 phimullem 12366 qtopbasss 14700 tgqioo 14734 plyaddlem1 14926 plymullem1 14927 |
Copyright terms: Public domain | W3C validator |