ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimass2 Unicode version

Theorem funimass2 5286
Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. (Contributed by NM, 25-May-2004.)
Assertion
Ref Expression
funimass2  |-  ( ( Fun  F  /\  A  C_  ( `' F " B ) )  -> 
( F " A
)  C_  B )

Proof of Theorem funimass2
StepHypRef Expression
1 imass2 4997 . 2  |-  ( A 
C_  ( `' F " B )  ->  ( F " A )  C_  ( F " ( `' F " B ) ) )
2 funimacnv 5284 . . . . 5  |-  ( Fun 
F  ->  ( F " ( `' F " B ) )  =  ( B  i^i  ran  F ) )
32sseq2d 3183 . . . 4  |-  ( Fun 
F  ->  ( ( F " A )  C_  ( F " ( `' F " B ) )  <->  ( F " A )  C_  ( B  i^i  ran  F )
) )
4 inss1 3353 . . . . 5  |-  ( B  i^i  ran  F )  C_  B
5 sstr2 3160 . . . . 5  |-  ( ( F " A ) 
C_  ( B  i^i  ran 
F )  ->  (
( B  i^i  ran  F )  C_  B  ->  ( F " A ) 
C_  B ) )
64, 5mpi 15 . . . 4  |-  ( ( F " A ) 
C_  ( B  i^i  ran 
F )  ->  ( F " A )  C_  B )
73, 6syl6bi 163 . . 3  |-  ( Fun 
F  ->  ( ( F " A )  C_  ( F " ( `' F " B ) )  ->  ( F " A )  C_  B
) )
87imp 124 . 2  |-  ( ( Fun  F  /\  ( F " A )  C_  ( F " ( `' F " B ) ) )  ->  ( F " A )  C_  B )
91, 8sylan2 286 1  |-  ( ( Fun  F  /\  A  C_  ( `' F " B ) )  -> 
( F " A
)  C_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    i^i cin 3126    C_ wss 3127   `'ccnv 4619   ran crn 4621   "cima 4623   Fun wfun 5202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-fun 5210
This theorem is referenced by:  fvimacnvi  5622
  Copyright terms: Public domain W3C validator