ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimass2 Unicode version

Theorem funimass2 5266
Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. (Contributed by NM, 25-May-2004.)
Assertion
Ref Expression
funimass2  |-  ( ( Fun  F  /\  A  C_  ( `' F " B ) )  -> 
( F " A
)  C_  B )

Proof of Theorem funimass2
StepHypRef Expression
1 imass2 4980 . 2  |-  ( A 
C_  ( `' F " B )  ->  ( F " A )  C_  ( F " ( `' F " B ) ) )
2 funimacnv 5264 . . . . 5  |-  ( Fun 
F  ->  ( F " ( `' F " B ) )  =  ( B  i^i  ran  F ) )
32sseq2d 3172 . . . 4  |-  ( Fun 
F  ->  ( ( F " A )  C_  ( F " ( `' F " B ) )  <->  ( F " A )  C_  ( B  i^i  ran  F )
) )
4 inss1 3342 . . . . 5  |-  ( B  i^i  ran  F )  C_  B
5 sstr2 3149 . . . . 5  |-  ( ( F " A ) 
C_  ( B  i^i  ran 
F )  ->  (
( B  i^i  ran  F )  C_  B  ->  ( F " A ) 
C_  B ) )
64, 5mpi 15 . . . 4  |-  ( ( F " A ) 
C_  ( B  i^i  ran 
F )  ->  ( F " A )  C_  B )
73, 6syl6bi 162 . . 3  |-  ( Fun 
F  ->  ( ( F " A )  C_  ( F " ( `' F " B ) )  ->  ( F " A )  C_  B
) )
87imp 123 . 2  |-  ( ( Fun  F  /\  ( F " A )  C_  ( F " ( `' F " B ) ) )  ->  ( F " A )  C_  B )
91, 8sylan2 284 1  |-  ( ( Fun  F  /\  A  C_  ( `' F " B ) )  -> 
( F " A
)  C_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    i^i cin 3115    C_ wss 3116   `'ccnv 4603   ran crn 4605   "cima 4607   Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-fun 5190
This theorem is referenced by:  fvimacnvi  5599
  Copyright terms: Public domain W3C validator