ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmpt3 Unicode version

Theorem fvmpt3 5587
Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypotheses
Ref Expression
fvmpt3.a  |-  ( x  =  A  ->  B  =  C )
fvmpt3.b  |-  F  =  ( x  e.  D  |->  B )
fvmpt3.c  |-  ( x  e.  D  ->  B  e.  V )
Assertion
Ref Expression
fvmpt3  |-  ( A  e.  D  ->  ( F `  A )  =  C )
Distinct variable groups:    x, A    x, C    x, D    x, V
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem fvmpt3
StepHypRef Expression
1 fvmpt3.a . . . 4  |-  ( x  =  A  ->  B  =  C )
21eleq1d 2244 . . 3  |-  ( x  =  A  ->  ( B  e.  V  <->  C  e.  V ) )
3 fvmpt3.c . . 3  |-  ( x  e.  D  ->  B  e.  V )
42, 3vtoclga 2801 . 2  |-  ( A  e.  D  ->  C  e.  V )
5 fvmpt3.b . . 3  |-  F  =  ( x  e.  D  |->  B )
61, 5fvmptg 5584 . 2  |-  ( ( A  e.  D  /\  C  e.  V )  ->  ( F `  A
)  =  C )
74, 6mpdan 421 1  |-  ( A  e.  D  ->  ( F `  A )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2146    |-> cmpt 4059   ` cfv 5208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216
This theorem is referenced by:  fvmpt3i  5588  frec2uzsucd  10369
  Copyright terms: Public domain W3C validator