Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvmpt3 | Unicode version |
Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
Ref | Expression |
---|---|
fvmpt3.a | |
fvmpt3.b | |
fvmpt3.c |
Ref | Expression |
---|---|
fvmpt3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmpt3.a | . . . 4 | |
2 | 1 | eleq1d 2244 | . . 3 |
3 | fvmpt3.c | . . 3 | |
4 | 2, 3 | vtoclga 2801 | . 2 |
5 | fvmpt3.b | . . 3 | |
6 | 1, 5 | fvmptg 5584 | . 2 |
7 | 4, 6 | mpdan 421 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1353 wcel 2146 cmpt 4059 cfv 5208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 |
This theorem is referenced by: fvmpt3i 5588 frec2uzsucd 10369 |
Copyright terms: Public domain | W3C validator |