ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmpt3 Unicode version

Theorem fvmpt3 5681
Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypotheses
Ref Expression
fvmpt3.a  |-  ( x  =  A  ->  B  =  C )
fvmpt3.b  |-  F  =  ( x  e.  D  |->  B )
fvmpt3.c  |-  ( x  e.  D  ->  B  e.  V )
Assertion
Ref Expression
fvmpt3  |-  ( A  e.  D  ->  ( F `  A )  =  C )
Distinct variable groups:    x, A    x, C    x, D    x, V
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem fvmpt3
StepHypRef Expression
1 fvmpt3.a . . . 4  |-  ( x  =  A  ->  B  =  C )
21eleq1d 2276 . . 3  |-  ( x  =  A  ->  ( B  e.  V  <->  C  e.  V ) )
3 fvmpt3.c . . 3  |-  ( x  e.  D  ->  B  e.  V )
42, 3vtoclga 2844 . 2  |-  ( A  e.  D  ->  C  e.  V )
5 fvmpt3.b . . 3  |-  F  =  ( x  e.  D  |->  B )
61, 5fvmptg 5678 . 2  |-  ( ( A  e.  D  /\  C  e.  V )  ->  ( F `  A
)  =  C )
74, 6mpdan 421 1  |-  ( A  e.  D  ->  ( F `  A )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178    |-> cmpt 4121   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298
This theorem is referenced by:  fvmpt3i  5682  frec2uzsucd  10583
  Copyright terms: Public domain W3C validator