| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmptg | Unicode version | ||
| Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fvmptg.1 |
|
| fvmptg.2 |
|
| Ref | Expression |
|---|---|
| fvmptg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2207 |
. 2
| |
| 2 | fvmptg.1 |
. . . 4
| |
| 3 | 2 | eqeq2d 2219 |
. . 3
|
| 4 | eqeq1 2214 |
. . 3
| |
| 5 | moeq 2955 |
. . . 4
| |
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | fvmptg.2 |
. . . 4
| |
| 8 | df-mpt 4123 |
. . . 4
| |
| 9 | 7, 8 | eqtri 2228 |
. . 3
|
| 10 | 3, 4, 6, 9 | fvopab3ig 5676 |
. 2
|
| 11 | 1, 10 | mpi 15 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 |
| This theorem is referenced by: fvmpt 5679 fvmpts 5680 fvmpt3 5681 fvmpt2 5686 f1mpt 5863 caofinvl 6207 1stvalg 6251 2ndvalg 6252 brtpos2 6360 rdgon 6495 frec0g 6506 freccllem 6511 frecfcllem 6513 frecsuclem 6515 sucinc 6554 sucinc2 6555 omcl 6570 oeicl 6571 oav2 6572 omv2 6574 fvdiagfn 6803 djulclr 7177 djurclr 7178 djulcl 7179 djurcl 7180 djulclb 7183 omp1eomlem 7222 ctmlemr 7236 nnnninf 7254 nnnninfeq 7256 cardval3ex 7318 ceilqval 10488 frec2uzzd 10582 frec2uzsucd 10583 monoord2 10668 iseqf1olemqval 10682 iseqf1olemqk 10689 seq3f1olemqsum 10695 seq3f1oleml 10698 seq3f1o 10699 seq3distr 10714 ser3le 10719 hashinfom 10960 hashennn 10962 cjval 11271 reval 11275 imval 11276 cvg1nlemcau 11410 cvg1nlemres 11411 absval 11427 resqrexlemglsq 11448 resqrexlemga 11449 climmpt 11726 climle 11760 climcvg1nlem 11775 summodclem3 11806 summodclem2a 11807 zsumdc 11810 fsum3 11813 fsumcl2lem 11824 sumsnf 11835 isumadd 11857 fsumrev 11869 fsumshft 11870 fsummulc2 11874 iserabs 11901 isumlessdc 11922 divcnv 11923 trireciplem 11926 trirecip 11927 expcnvap0 11928 expcnvre 11929 expcnv 11930 explecnv 11931 geolim 11937 geolim2 11938 geo2lim 11942 geoisum 11943 geoisumr 11944 geoisum1 11945 geoisum1c 11946 cvgratz 11958 mertenslem2 11962 mertensabs 11963 fprodmul 12017 eftvalcn 12083 efval 12087 efcvgfsum 12093 ege2le3 12097 efcj 12099 eftlub 12116 efgt1p2 12121 eflegeo 12127 sinval 12128 cosval 12129 tanvalap 12134 eirraplem 12203 phival 12650 crth 12661 phimullem 12662 ennnfonelemj0 12887 ennnfonelem0 12891 strnfvnd 12967 topnvalg 13198 tgval 13209 2idlval 14379 zrhval 14494 toponsspwpwg 14609 cldval 14686 ntrfval 14687 clsfval 14688 neifval 14727 neival 14730 ismet 14931 isxmet 14932 divcnap 15152 mulc1cncf 15176 djucllem 15936 nnsf 16144 peano3nninf 16146 nninfself 16152 nninfsellemeqinf 16155 dceqnconst 16201 dcapnconst 16202 |
| Copyright terms: Public domain | W3C validator |