Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvmptg | Unicode version |
Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fvmptg.1 | |
fvmptg.2 |
Ref | Expression |
---|---|
fvmptg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2170 | . 2 | |
2 | fvmptg.1 | . . . 4 | |
3 | 2 | eqeq2d 2182 | . . 3 |
4 | eqeq1 2177 | . . 3 | |
5 | moeq 2905 | . . . 4 | |
6 | 5 | a1i 9 | . . 3 |
7 | fvmptg.2 | . . . 4 | |
8 | df-mpt 4050 | . . . 4 | |
9 | 7, 8 | eqtri 2191 | . . 3 |
10 | 3, 4, 6, 9 | fvopab3ig 5568 | . 2 |
11 | 1, 10 | mpi 15 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wmo 2020 wcel 2141 copab 4047 cmpt 4048 cfv 5196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 |
This theorem is referenced by: fvmpt 5571 fvmpts 5572 fvmpt3 5573 fvmpt2 5577 f1mpt 5747 caofinvl 6080 1stvalg 6118 2ndvalg 6119 brtpos2 6227 rdgon 6362 frec0g 6373 freccllem 6378 frecfcllem 6380 frecsuclem 6382 sucinc 6421 sucinc2 6422 omcl 6437 oeicl 6438 oav2 6439 omv2 6441 fvdiagfn 6667 djulclr 7022 djurclr 7023 djulcl 7024 djurcl 7025 djulclb 7028 omp1eomlem 7067 ctmlemr 7081 nnnninf 7098 nnnninfeq 7100 cardval3ex 7149 ceilqval 10249 frec2uzzd 10343 frec2uzsucd 10344 monoord2 10420 iseqf1olemqval 10430 iseqf1olemqk 10437 seq3f1olemqsum 10443 seq3f1oleml 10446 seq3f1o 10447 seq3distr 10456 ser3le 10461 hashinfom 10699 hashennn 10701 cjval 10796 reval 10800 imval 10801 cvg1nlemcau 10935 cvg1nlemres 10936 absval 10952 resqrexlemglsq 10973 resqrexlemga 10974 climmpt 11250 climle 11284 climcvg1nlem 11299 summodclem3 11330 summodclem2a 11331 zsumdc 11334 fsum3 11337 fsumcl2lem 11348 sumsnf 11359 isumadd 11381 fsumrev 11393 fsumshft 11394 fsummulc2 11398 iserabs 11425 isumlessdc 11446 divcnv 11447 trireciplem 11450 trirecip 11451 expcnvap0 11452 expcnvre 11453 expcnv 11454 explecnv 11455 geolim 11461 geolim2 11462 geo2lim 11466 geoisum 11467 geoisumr 11468 geoisum1 11469 geoisum1c 11470 cvgratz 11482 mertenslem2 11486 mertensabs 11487 fprodmul 11541 eftvalcn 11607 efval 11611 efcvgfsum 11617 ege2le3 11621 efcj 11623 eftlub 11640 efgt1p2 11645 eflegeo 11651 sinval 11652 cosval 11653 tanvalap 11658 eirraplem 11726 phival 12154 crth 12165 phimullem 12166 ennnfonelemj0 12343 ennnfonelem0 12347 strnfvnd 12423 topnvalg 12578 toponsspwpwg 12773 tgval 12802 cldval 12852 ntrfval 12853 clsfval 12854 neifval 12893 neival 12896 ismet 13097 isxmet 13098 divcnap 13308 mulc1cncf 13329 djucllem 13794 nnsf 13998 peano3nninf 14000 nninfself 14006 nninfsellemeqinf 14009 dceqnconst 14051 dcapnconst 14052 |
Copyright terms: Public domain | W3C validator |