| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmptg | Unicode version | ||
| Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fvmptg.1 |
|
| fvmptg.2 |
|
| Ref | Expression |
|---|---|
| fvmptg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 |
. 2
| |
| 2 | fvmptg.1 |
. . . 4
| |
| 3 | 2 | eqeq2d 2216 |
. . 3
|
| 4 | eqeq1 2211 |
. . 3
| |
| 5 | moeq 2947 |
. . . 4
| |
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | fvmptg.2 |
. . . 4
| |
| 8 | df-mpt 4106 |
. . . 4
| |
| 9 | 7, 8 | eqtri 2225 |
. . 3
|
| 10 | 3, 4, 6, 9 | fvopab3ig 5652 |
. 2
|
| 11 | 1, 10 | mpi 15 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 |
| This theorem is referenced by: fvmpt 5655 fvmpts 5656 fvmpt3 5657 fvmpt2 5662 f1mpt 5839 caofinvl 6183 1stvalg 6227 2ndvalg 6228 brtpos2 6336 rdgon 6471 frec0g 6482 freccllem 6487 frecfcllem 6489 frecsuclem 6491 sucinc 6530 sucinc2 6531 omcl 6546 oeicl 6547 oav2 6548 omv2 6550 fvdiagfn 6779 djulclr 7150 djurclr 7151 djulcl 7152 djurcl 7153 djulclb 7156 omp1eomlem 7195 ctmlemr 7209 nnnninf 7227 nnnninfeq 7229 cardval3ex 7291 ceilqval 10449 frec2uzzd 10543 frec2uzsucd 10544 monoord2 10629 iseqf1olemqval 10643 iseqf1olemqk 10650 seq3f1olemqsum 10656 seq3f1oleml 10659 seq3f1o 10660 seq3distr 10675 ser3le 10680 hashinfom 10921 hashennn 10923 cjval 11127 reval 11131 imval 11132 cvg1nlemcau 11266 cvg1nlemres 11267 absval 11283 resqrexlemglsq 11304 resqrexlemga 11305 climmpt 11582 climle 11616 climcvg1nlem 11631 summodclem3 11662 summodclem2a 11663 zsumdc 11666 fsum3 11669 fsumcl2lem 11680 sumsnf 11691 isumadd 11713 fsumrev 11725 fsumshft 11726 fsummulc2 11730 iserabs 11757 isumlessdc 11778 divcnv 11779 trireciplem 11782 trirecip 11783 expcnvap0 11784 expcnvre 11785 expcnv 11786 explecnv 11787 geolim 11793 geolim2 11794 geo2lim 11798 geoisum 11799 geoisumr 11800 geoisum1 11801 geoisum1c 11802 cvgratz 11814 mertenslem2 11818 mertensabs 11819 fprodmul 11873 eftvalcn 11939 efval 11943 efcvgfsum 11949 ege2le3 11953 efcj 11955 eftlub 11972 efgt1p2 11977 eflegeo 11983 sinval 11984 cosval 11985 tanvalap 11990 eirraplem 12059 phival 12506 crth 12517 phimullem 12518 ennnfonelemj0 12743 ennnfonelem0 12747 strnfvnd 12823 topnvalg 13054 tgval 13065 2idlval 14235 zrhval 14350 toponsspwpwg 14465 cldval 14542 ntrfval 14543 clsfval 14544 neifval 14583 neival 14586 ismet 14787 isxmet 14788 divcnap 15008 mulc1cncf 15032 djucllem 15698 nnsf 15904 peano3nninf 15906 nninfself 15912 nninfsellemeqinf 15915 dceqnconst 15961 dcapnconst 15962 |
| Copyright terms: Public domain | W3C validator |