| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmptg | Unicode version | ||
| Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fvmptg.1 |
|
| fvmptg.2 |
|
| Ref | Expression |
|---|---|
| fvmptg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. 2
| |
| 2 | fvmptg.1 |
. . . 4
| |
| 3 | 2 | eqeq2d 2241 |
. . 3
|
| 4 | eqeq1 2236 |
. . 3
| |
| 5 | moeq 2978 |
. . . 4
| |
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | fvmptg.2 |
. . . 4
| |
| 8 | df-mpt 4146 |
. . . 4
| |
| 9 | 7, 8 | eqtri 2250 |
. . 3
|
| 10 | 3, 4, 6, 9 | fvopab3ig 5707 |
. 2
|
| 11 | 1, 10 | mpi 15 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 |
| This theorem is referenced by: fvmpt 5710 fvmpts 5711 fvmpt3 5712 fvmpt2 5717 f1mpt 5894 caofinvl 6242 1stvalg 6286 2ndvalg 6287 brtpos2 6395 rdgon 6530 frec0g 6541 freccllem 6546 frecfcllem 6548 frecsuclem 6550 sucinc 6589 sucinc2 6590 omcl 6605 oeicl 6606 oav2 6607 omv2 6609 fvdiagfn 6838 djulclr 7212 djurclr 7213 djulcl 7214 djurcl 7215 djulclb 7218 omp1eomlem 7257 ctmlemr 7271 nnnninf 7289 nnnninfeq 7291 cardval3ex 7353 ceilqval 10523 frec2uzzd 10617 frec2uzsucd 10618 monoord2 10703 iseqf1olemqval 10717 iseqf1olemqk 10724 seq3f1olemqsum 10730 seq3f1oleml 10733 seq3f1o 10734 seq3distr 10749 ser3le 10754 hashinfom 10995 hashennn 10997 cjval 11351 reval 11355 imval 11356 cvg1nlemcau 11490 cvg1nlemres 11491 absval 11507 resqrexlemglsq 11528 resqrexlemga 11529 climmpt 11806 climle 11840 climcvg1nlem 11855 summodclem3 11886 summodclem2a 11887 zsumdc 11890 fsum3 11893 fsumcl2lem 11904 sumsnf 11915 isumadd 11937 fsumrev 11949 fsumshft 11950 fsummulc2 11954 iserabs 11981 isumlessdc 12002 divcnv 12003 trireciplem 12006 trirecip 12007 expcnvap0 12008 expcnvre 12009 expcnv 12010 explecnv 12011 geolim 12017 geolim2 12018 geo2lim 12022 geoisum 12023 geoisumr 12024 geoisum1 12025 geoisum1c 12026 cvgratz 12038 mertenslem2 12042 mertensabs 12043 fprodmul 12097 eftvalcn 12163 efval 12167 efcvgfsum 12173 ege2le3 12177 efcj 12179 eftlub 12196 efgt1p2 12201 eflegeo 12207 sinval 12208 cosval 12209 tanvalap 12214 eirraplem 12283 phival 12730 crth 12741 phimullem 12742 ennnfonelemj0 12967 ennnfonelem0 12971 strnfvnd 13047 topnvalg 13279 tgval 13290 2idlval 14460 zrhval 14575 toponsspwpwg 14690 cldval 14767 ntrfval 14768 clsfval 14769 neifval 14808 neival 14811 ismet 15012 isxmet 15013 divcnap 15233 mulc1cncf 15257 djucllem 16122 nnsf 16330 peano3nninf 16332 nninfself 16338 nninfsellemeqinf 16341 dceqnconst 16387 dcapnconst 16388 |
| Copyright terms: Public domain | W3C validator |