| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmptg | Unicode version | ||
| Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fvmptg.1 |
|
| fvmptg.2 |
|
| Ref | Expression |
|---|---|
| fvmptg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2205 |
. 2
| |
| 2 | fvmptg.1 |
. . . 4
| |
| 3 | 2 | eqeq2d 2217 |
. . 3
|
| 4 | eqeq1 2212 |
. . 3
| |
| 5 | moeq 2948 |
. . . 4
| |
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | fvmptg.2 |
. . . 4
| |
| 8 | df-mpt 4107 |
. . . 4
| |
| 9 | 7, 8 | eqtri 2226 |
. . 3
|
| 10 | 3, 4, 6, 9 | fvopab3ig 5653 |
. 2
|
| 11 | 1, 10 | mpi 15 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 |
| This theorem is referenced by: fvmpt 5656 fvmpts 5657 fvmpt3 5658 fvmpt2 5663 f1mpt 5840 caofinvl 6184 1stvalg 6228 2ndvalg 6229 brtpos2 6337 rdgon 6472 frec0g 6483 freccllem 6488 frecfcllem 6490 frecsuclem 6492 sucinc 6531 sucinc2 6532 omcl 6547 oeicl 6548 oav2 6549 omv2 6551 fvdiagfn 6780 djulclr 7151 djurclr 7152 djulcl 7153 djurcl 7154 djulclb 7157 omp1eomlem 7196 ctmlemr 7210 nnnninf 7228 nnnninfeq 7230 cardval3ex 7292 ceilqval 10451 frec2uzzd 10545 frec2uzsucd 10546 monoord2 10631 iseqf1olemqval 10645 iseqf1olemqk 10652 seq3f1olemqsum 10658 seq3f1oleml 10661 seq3f1o 10662 seq3distr 10677 ser3le 10682 hashinfom 10923 hashennn 10925 cjval 11156 reval 11160 imval 11161 cvg1nlemcau 11295 cvg1nlemres 11296 absval 11312 resqrexlemglsq 11333 resqrexlemga 11334 climmpt 11611 climle 11645 climcvg1nlem 11660 summodclem3 11691 summodclem2a 11692 zsumdc 11695 fsum3 11698 fsumcl2lem 11709 sumsnf 11720 isumadd 11742 fsumrev 11754 fsumshft 11755 fsummulc2 11759 iserabs 11786 isumlessdc 11807 divcnv 11808 trireciplem 11811 trirecip 11812 expcnvap0 11813 expcnvre 11814 expcnv 11815 explecnv 11816 geolim 11822 geolim2 11823 geo2lim 11827 geoisum 11828 geoisumr 11829 geoisum1 11830 geoisum1c 11831 cvgratz 11843 mertenslem2 11847 mertensabs 11848 fprodmul 11902 eftvalcn 11968 efval 11972 efcvgfsum 11978 ege2le3 11982 efcj 11984 eftlub 12001 efgt1p2 12006 eflegeo 12012 sinval 12013 cosval 12014 tanvalap 12019 eirraplem 12088 phival 12535 crth 12546 phimullem 12547 ennnfonelemj0 12772 ennnfonelem0 12776 strnfvnd 12852 topnvalg 13083 tgval 13094 2idlval 14264 zrhval 14379 toponsspwpwg 14494 cldval 14571 ntrfval 14572 clsfval 14573 neifval 14612 neival 14615 ismet 14816 isxmet 14817 divcnap 15037 mulc1cncf 15061 djucllem 15736 nnsf 15942 peano3nninf 15944 nninfself 15950 nninfsellemeqinf 15953 dceqnconst 15999 dcapnconst 16000 |
| Copyright terms: Public domain | W3C validator |