![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvmptg | Unicode version |
Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fvmptg.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
fvmptg.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
fvmptg |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2177 |
. 2
![]() ![]() ![]() ![]() | |
2 | fvmptg.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | eqeq2d 2189 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | eqeq1 2184 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | moeq 2913 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 5 | a1i 9 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | fvmptg.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | df-mpt 4067 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 7, 8 | eqtri 2198 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 3, 4, 6, 9 | fvopab3ig 5591 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 1, 10 | mpi 15 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-sbc 2964 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-iota 5179 df-fun 5219 df-fv 5225 |
This theorem is referenced by: fvmpt 5594 fvmpts 5595 fvmpt3 5596 fvmpt2 5600 f1mpt 5772 caofinvl 6105 1stvalg 6143 2ndvalg 6144 brtpos2 6252 rdgon 6387 frec0g 6398 freccllem 6403 frecfcllem 6405 frecsuclem 6407 sucinc 6446 sucinc2 6447 omcl 6462 oeicl 6463 oav2 6464 omv2 6466 fvdiagfn 6693 djulclr 7048 djurclr 7049 djulcl 7050 djurcl 7051 djulclb 7054 omp1eomlem 7093 ctmlemr 7107 nnnninf 7124 nnnninfeq 7126 cardval3ex 7184 ceilqval 10306 frec2uzzd 10400 frec2uzsucd 10401 monoord2 10477 iseqf1olemqval 10487 iseqf1olemqk 10494 seq3f1olemqsum 10500 seq3f1oleml 10503 seq3f1o 10504 seq3distr 10513 ser3le 10518 hashinfom 10758 hashennn 10760 cjval 10854 reval 10858 imval 10859 cvg1nlemcau 10993 cvg1nlemres 10994 absval 11010 resqrexlemglsq 11031 resqrexlemga 11032 climmpt 11308 climle 11342 climcvg1nlem 11357 summodclem3 11388 summodclem2a 11389 zsumdc 11392 fsum3 11395 fsumcl2lem 11406 sumsnf 11417 isumadd 11439 fsumrev 11451 fsumshft 11452 fsummulc2 11456 iserabs 11483 isumlessdc 11504 divcnv 11505 trireciplem 11508 trirecip 11509 expcnvap0 11510 expcnvre 11511 expcnv 11512 explecnv 11513 geolim 11519 geolim2 11520 geo2lim 11524 geoisum 11525 geoisumr 11526 geoisum1 11527 geoisum1c 11528 cvgratz 11540 mertenslem2 11544 mertensabs 11545 fprodmul 11599 eftvalcn 11665 efval 11669 efcvgfsum 11675 ege2le3 11679 efcj 11681 eftlub 11698 efgt1p2 11703 eflegeo 11709 sinval 11710 cosval 11711 tanvalap 11716 eirraplem 11784 phival 12213 crth 12224 phimullem 12225 ennnfonelemj0 12402 ennnfonelem0 12406 strnfvnd 12482 topnvalg 12700 tgval 12711 toponsspwpwg 13525 cldval 13602 ntrfval 13603 clsfval 13604 neifval 13643 neival 13646 ismet 13847 isxmet 13848 divcnap 14058 mulc1cncf 14079 djucllem 14555 nnsf 14757 peano3nninf 14759 nninfself 14765 nninfsellemeqinf 14768 dceqnconst 14810 dcapnconst 14811 |
Copyright terms: Public domain | W3C validator |