| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fvmptg | Unicode version | ||
| Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| fvmptg.1 | 
 | 
| fvmptg.2 | 
 | 
| Ref | Expression | 
|---|---|
| fvmptg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2196 | 
. 2
 | |
| 2 | fvmptg.1 | 
. . . 4
 | |
| 3 | 2 | eqeq2d 2208 | 
. . 3
 | 
| 4 | eqeq1 2203 | 
. . 3
 | |
| 5 | moeq 2939 | 
. . . 4
 | |
| 6 | 5 | a1i 9 | 
. . 3
 | 
| 7 | fvmptg.2 | 
. . . 4
 | |
| 8 | df-mpt 4096 | 
. . . 4
 | |
| 9 | 7, 8 | eqtri 2217 | 
. . 3
 | 
| 10 | 3, 4, 6, 9 | fvopab3ig 5635 | 
. 2
 | 
| 11 | 1, 10 | mpi 15 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 | 
| This theorem is referenced by: fvmpt 5638 fvmpts 5639 fvmpt3 5640 fvmpt2 5645 f1mpt 5818 caofinvl 6160 1stvalg 6200 2ndvalg 6201 brtpos2 6309 rdgon 6444 frec0g 6455 freccllem 6460 frecfcllem 6462 frecsuclem 6464 sucinc 6503 sucinc2 6504 omcl 6519 oeicl 6520 oav2 6521 omv2 6523 fvdiagfn 6752 djulclr 7115 djurclr 7116 djulcl 7117 djurcl 7118 djulclb 7121 omp1eomlem 7160 ctmlemr 7174 nnnninf 7192 nnnninfeq 7194 cardval3ex 7252 ceilqval 10398 frec2uzzd 10492 frec2uzsucd 10493 monoord2 10578 iseqf1olemqval 10592 iseqf1olemqk 10599 seq3f1olemqsum 10605 seq3f1oleml 10608 seq3f1o 10609 seq3distr 10624 ser3le 10629 hashinfom 10870 hashennn 10872 cjval 11010 reval 11014 imval 11015 cvg1nlemcau 11149 cvg1nlemres 11150 absval 11166 resqrexlemglsq 11187 resqrexlemga 11188 climmpt 11465 climle 11499 climcvg1nlem 11514 summodclem3 11545 summodclem2a 11546 zsumdc 11549 fsum3 11552 fsumcl2lem 11563 sumsnf 11574 isumadd 11596 fsumrev 11608 fsumshft 11609 fsummulc2 11613 iserabs 11640 isumlessdc 11661 divcnv 11662 trireciplem 11665 trirecip 11666 expcnvap0 11667 expcnvre 11668 expcnv 11669 explecnv 11670 geolim 11676 geolim2 11677 geo2lim 11681 geoisum 11682 geoisumr 11683 geoisum1 11684 geoisum1c 11685 cvgratz 11697 mertenslem2 11701 mertensabs 11702 fprodmul 11756 eftvalcn 11822 efval 11826 efcvgfsum 11832 ege2le3 11836 efcj 11838 eftlub 11855 efgt1p2 11860 eflegeo 11866 sinval 11867 cosval 11868 tanvalap 11873 eirraplem 11942 phival 12381 crth 12392 phimullem 12393 ennnfonelemj0 12618 ennnfonelem0 12622 strnfvnd 12698 topnvalg 12922 tgval 12933 2idlval 14058 zrhval 14173 toponsspwpwg 14258 cldval 14335 ntrfval 14336 clsfval 14337 neifval 14376 neival 14379 ismet 14580 isxmet 14581 divcnap 14801 mulc1cncf 14825 djucllem 15446 nnsf 15649 peano3nninf 15651 nninfself 15657 nninfsellemeqinf 15660 dceqnconst 15704 dcapnconst 15705 | 
| Copyright terms: Public domain | W3C validator |