ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmpts Unicode version

Theorem fvmpts 5680
Description: Value of a function given in maps-to notation, using explicit class substitution. (Contributed by Scott Fenton, 17-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
fvmpts.1  |-  F  =  ( x  e.  C  |->  B )
Assertion
Ref Expression
fvmpts  |-  ( ( A  e.  C  /\  [_ A  /  x ]_ B  e.  V )  ->  ( F `  A
)  =  [_ A  /  x ]_ B )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)    F( x)    V( x)

Proof of Theorem fvmpts
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3104 . 2  |-  ( y  =  A  ->  [_ y  /  x ]_ B  = 
[_ A  /  x ]_ B )
2 fvmpts.1 . . 3  |-  F  =  ( x  e.  C  |->  B )
3 nfcv 2350 . . . 4  |-  F/_ y B
4 nfcsb1v 3134 . . . 4  |-  F/_ x [_ y  /  x ]_ B
5 csbeq1a 3110 . . . 4  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
63, 4, 5cbvmpt 4155 . . 3  |-  ( x  e.  C  |->  B )  =  ( y  e.  C  |->  [_ y  /  x ]_ B )
72, 6eqtri 2228 . 2  |-  F  =  ( y  e.  C  |-> 
[_ y  /  x ]_ B )
81, 7fvmptg 5678 1  |-  ( ( A  e.  C  /\  [_ A  /  x ]_ B  e.  V )  ->  ( F `  A
)  =  [_ A  /  x ]_ B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   [_csb 3101    |-> cmpt 4121   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298
This theorem is referenced by:  fvmptd  5683  cc3  7415  sumfct  11800  zsumdc  11810  isumss  11817  fsummulc2  11874  isumshft  11916  prodfct  12013  prodssdc  12015  fprodmul  12017  gsumfzfsumlemm  14464  mulcncflem  15194
  Copyright terms: Public domain W3C validator