ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmpt3 GIF version

Theorem fvmpt3 5640
Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypotheses
Ref Expression
fvmpt3.a (𝑥 = 𝐴𝐵 = 𝐶)
fvmpt3.b 𝐹 = (𝑥𝐷𝐵)
fvmpt3.c (𝑥𝐷𝐵𝑉)
Assertion
Ref Expression
fvmpt3 (𝐴𝐷 → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝑉
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fvmpt3
StepHypRef Expression
1 fvmpt3.a . . . 4 (𝑥 = 𝐴𝐵 = 𝐶)
21eleq1d 2265 . . 3 (𝑥 = 𝐴 → (𝐵𝑉𝐶𝑉))
3 fvmpt3.c . . 3 (𝑥𝐷𝐵𝑉)
42, 3vtoclga 2830 . 2 (𝐴𝐷𝐶𝑉)
5 fvmpt3.b . . 3 𝐹 = (𝑥𝐷𝐵)
61, 5fvmptg 5637 . 2 ((𝐴𝐷𝐶𝑉) → (𝐹𝐴) = 𝐶)
74, 6mpdan 421 1 (𝐴𝐷 → (𝐹𝐴) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  cmpt 4094  cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266
This theorem is referenced by:  fvmpt3i  5641  frec2uzsucd  10493
  Copyright terms: Public domain W3C validator