ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzsucd Unicode version

Theorem frec2uzsucd 10472
Description: The value of  G (see frec2uz0d 10470) at a successor. (Contributed by Jim Kingdon, 16-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
frec2uzzd.a  |-  ( ph  ->  A  e.  om )
Assertion
Ref Expression
frec2uzsucd  |-  ( ph  ->  ( G `  suc  A )  =  ( ( G `  A )  +  1 ) )
Distinct variable group:    x, C
Allowed substitution hints:    ph( x)    A( x)    G( x)

Proof of Theorem frec2uzsucd
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 peano2z 9353 . . . . . . 7  |-  ( z  e.  ZZ  ->  (
z  +  1 )  e.  ZZ )
2 oveq1 5925 . . . . . . . 8  |-  ( x  =  z  ->  (
x  +  1 )  =  ( z  +  1 ) )
3 eqid 2193 . . . . . . . 8  |-  ( x  e.  ZZ  |->  ( x  +  1 ) )  =  ( x  e.  ZZ  |->  ( x  + 
1 ) )
42, 3fvmptg 5633 . . . . . . 7  |-  ( ( z  e.  ZZ  /\  ( z  +  1 )  e.  ZZ )  ->  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `
 z )  =  ( z  +  1 ) )
51, 4mpdan 421 . . . . . 6  |-  ( z  e.  ZZ  ->  (
( x  e.  ZZ  |->  ( x  +  1
) ) `  z
)  =  ( z  +  1 ) )
65, 1eqeltrd 2270 . . . . 5  |-  ( z  e.  ZZ  ->  (
( x  e.  ZZ  |->  ( x  +  1
) ) `  z
)  e.  ZZ )
76rgen 2547 . . . 4  |-  A. z  e.  ZZ  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `
 z )  e.  ZZ
8 frec2uz.1 . . . 4  |-  ( ph  ->  C  e.  ZZ )
9 frec2uzzd.a . . . 4  |-  ( ph  ->  A  e.  om )
10 frecsuc 6460 . . . 4  |-  ( ( A. z  e.  ZZ  ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) `  z )  e.  ZZ  /\  C  e.  ZZ  /\  A  e.  om )  ->  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `  suc  A )  =  ( ( x  e.  ZZ  |->  ( x  +  1
) ) `  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C ) `  A
) ) )
117, 8, 9, 10mp3an2i 1353 . . 3  |-  ( ph  ->  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `  suc  A )  =  ( ( x  e.  ZZ  |->  ( x  +  1
) ) `  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C ) `  A
) ) )
12 frec2uz.2 . . . 4  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
1312fveq1i 5555 . . 3  |-  ( G `
 suc  A )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `  suc  A )
1412fveq1i 5555 . . . 4  |-  ( G `
 A )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `  A )
1514fveq2i 5557 . . 3  |-  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  ( G `
 A ) )  =  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `
 (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `
 A ) )
1611, 13, 153eqtr4g 2251 . 2  |-  ( ph  ->  ( G `  suc  A )  =  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  ( G `
 A ) ) )
178, 12, 9frec2uzzd 10471 . . 3  |-  ( ph  ->  ( G `  A
)  e.  ZZ )
18 oveq1 5925 . . . 4  |-  ( z  =  ( G `  A )  ->  (
z  +  1 )  =  ( ( G `
 A )  +  1 ) )
192cbvmptv 4125 . . . 4  |-  ( x  e.  ZZ  |->  ( x  +  1 ) )  =  ( z  e.  ZZ  |->  ( z  +  1 ) )
2018, 19, 1fvmpt3 5636 . . 3  |-  ( ( G `  A )  e.  ZZ  ->  (
( x  e.  ZZ  |->  ( x  +  1
) ) `  ( G `  A )
)  =  ( ( G `  A )  +  1 ) )
2117, 20syl 14 . 2  |-  ( ph  ->  ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) `  ( G `  A ) )  =  ( ( G `  A )  +  1 ) )
2216, 21eqtrd 2226 1  |-  ( ph  ->  ( G `  suc  A )  =  ( ( G `  A )  +  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   A.wral 2472    |-> cmpt 4090   suc csuc 4396   omcom 4622   ` cfv 5254  (class class class)co 5918  freccfrec 6443   1c1 7873    + caddc 7875   ZZcz 9317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-recs 6358  df-frec 6444  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318
This theorem is referenced by:  frec2uzuzd  10473  frec2uzltd  10474  frec2uzrand  10476  frec2uzrdg  10480  frecuzrdgsuc  10485  frecuzrdgg  10487  frecfzennn  10497  1tonninf  10512  omgadd  10873  ennnfonelemkh  12569  ennnfonelemhf1o  12570  ennnfonelemnn0  12579  012of  15486  2o01f  15487  isomninnlem  15520  iswomninnlem  15539  ismkvnnlem  15542
  Copyright terms: Public domain W3C validator