ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzsucd Unicode version

Theorem frec2uzsucd 10401
Description: The value of  G (see frec2uz0d 10399) at a successor. (Contributed by Jim Kingdon, 16-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
frec2uzzd.a  |-  ( ph  ->  A  e.  om )
Assertion
Ref Expression
frec2uzsucd  |-  ( ph  ->  ( G `  suc  A )  =  ( ( G `  A )  +  1 ) )
Distinct variable group:    x, C
Allowed substitution hints:    ph( x)    A( x)    G( x)

Proof of Theorem frec2uzsucd
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 peano2z 9289 . . . . . . 7  |-  ( z  e.  ZZ  ->  (
z  +  1 )  e.  ZZ )
2 oveq1 5882 . . . . . . . 8  |-  ( x  =  z  ->  (
x  +  1 )  =  ( z  +  1 ) )
3 eqid 2177 . . . . . . . 8  |-  ( x  e.  ZZ  |->  ( x  +  1 ) )  =  ( x  e.  ZZ  |->  ( x  + 
1 ) )
42, 3fvmptg 5593 . . . . . . 7  |-  ( ( z  e.  ZZ  /\  ( z  +  1 )  e.  ZZ )  ->  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `
 z )  =  ( z  +  1 ) )
51, 4mpdan 421 . . . . . 6  |-  ( z  e.  ZZ  ->  (
( x  e.  ZZ  |->  ( x  +  1
) ) `  z
)  =  ( z  +  1 ) )
65, 1eqeltrd 2254 . . . . 5  |-  ( z  e.  ZZ  ->  (
( x  e.  ZZ  |->  ( x  +  1
) ) `  z
)  e.  ZZ )
76rgen 2530 . . . 4  |-  A. z  e.  ZZ  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `
 z )  e.  ZZ
8 frec2uz.1 . . . 4  |-  ( ph  ->  C  e.  ZZ )
9 frec2uzzd.a . . . 4  |-  ( ph  ->  A  e.  om )
10 frecsuc 6408 . . . 4  |-  ( ( A. z  e.  ZZ  ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) `  z )  e.  ZZ  /\  C  e.  ZZ  /\  A  e.  om )  ->  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `  suc  A )  =  ( ( x  e.  ZZ  |->  ( x  +  1
) ) `  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C ) `  A
) ) )
117, 8, 9, 10mp3an2i 1342 . . 3  |-  ( ph  ->  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `  suc  A )  =  ( ( x  e.  ZZ  |->  ( x  +  1
) ) `  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C ) `  A
) ) )
12 frec2uz.2 . . . 4  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
1312fveq1i 5517 . . 3  |-  ( G `
 suc  A )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `  suc  A )
1412fveq1i 5517 . . . 4  |-  ( G `
 A )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `  A )
1514fveq2i 5519 . . 3  |-  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  ( G `
 A ) )  =  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `
 (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `
 A ) )
1611, 13, 153eqtr4g 2235 . 2  |-  ( ph  ->  ( G `  suc  A )  =  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  ( G `
 A ) ) )
178, 12, 9frec2uzzd 10400 . . 3  |-  ( ph  ->  ( G `  A
)  e.  ZZ )
18 oveq1 5882 . . . 4  |-  ( z  =  ( G `  A )  ->  (
z  +  1 )  =  ( ( G `
 A )  +  1 ) )
192cbvmptv 4100 . . . 4  |-  ( x  e.  ZZ  |->  ( x  +  1 ) )  =  ( z  e.  ZZ  |->  ( z  +  1 ) )
2018, 19, 1fvmpt3 5596 . . 3  |-  ( ( G `  A )  e.  ZZ  ->  (
( x  e.  ZZ  |->  ( x  +  1
) ) `  ( G `  A )
)  =  ( ( G `  A )  +  1 ) )
2117, 20syl 14 . 2  |-  ( ph  ->  ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) `  ( G `  A ) )  =  ( ( G `  A )  +  1 ) )
2216, 21eqtrd 2210 1  |-  ( ph  ->  ( G `  suc  A )  =  ( ( G `  A )  +  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   A.wral 2455    |-> cmpt 4065   suc csuc 4366   omcom 4590   ` cfv 5217  (class class class)co 5875  freccfrec 6391   1c1 7812    + caddc 7814   ZZcz 9253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-recs 6306  df-frec 6392  df-sub 8130  df-neg 8131  df-inn 8920  df-n0 9177  df-z 9254
This theorem is referenced by:  frec2uzuzd  10402  frec2uzltd  10403  frec2uzrand  10405  frec2uzrdg  10409  frecuzrdgsuc  10414  frecuzrdgg  10416  frecfzennn  10426  1tonninf  10440  omgadd  10782  ennnfonelemkh  12413  ennnfonelemhf1o  12414  ennnfonelemnn0  12423  012of  14748  2o01f  14749  isomninnlem  14781  iswomninnlem  14800  ismkvnnlem  14803
  Copyright terms: Public domain W3C validator