ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzsucd Unicode version

Theorem frec2uzsucd 10548
Description: The value of  G (see frec2uz0d 10546) at a successor. (Contributed by Jim Kingdon, 16-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
frec2uzzd.a  |-  ( ph  ->  A  e.  om )
Assertion
Ref Expression
frec2uzsucd  |-  ( ph  ->  ( G `  suc  A )  =  ( ( G `  A )  +  1 ) )
Distinct variable group:    x, C
Allowed substitution hints:    ph( x)    A( x)    G( x)

Proof of Theorem frec2uzsucd
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 peano2z 9410 . . . . . . 7  |-  ( z  e.  ZZ  ->  (
z  +  1 )  e.  ZZ )
2 oveq1 5953 . . . . . . . 8  |-  ( x  =  z  ->  (
x  +  1 )  =  ( z  +  1 ) )
3 eqid 2205 . . . . . . . 8  |-  ( x  e.  ZZ  |->  ( x  +  1 ) )  =  ( x  e.  ZZ  |->  ( x  + 
1 ) )
42, 3fvmptg 5657 . . . . . . 7  |-  ( ( z  e.  ZZ  /\  ( z  +  1 )  e.  ZZ )  ->  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `
 z )  =  ( z  +  1 ) )
51, 4mpdan 421 . . . . . 6  |-  ( z  e.  ZZ  ->  (
( x  e.  ZZ  |->  ( x  +  1
) ) `  z
)  =  ( z  +  1 ) )
65, 1eqeltrd 2282 . . . . 5  |-  ( z  e.  ZZ  ->  (
( x  e.  ZZ  |->  ( x  +  1
) ) `  z
)  e.  ZZ )
76rgen 2559 . . . 4  |-  A. z  e.  ZZ  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `
 z )  e.  ZZ
8 frec2uz.1 . . . 4  |-  ( ph  ->  C  e.  ZZ )
9 frec2uzzd.a . . . 4  |-  ( ph  ->  A  e.  om )
10 frecsuc 6495 . . . 4  |-  ( ( A. z  e.  ZZ  ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) `  z )  e.  ZZ  /\  C  e.  ZZ  /\  A  e.  om )  ->  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `  suc  A )  =  ( ( x  e.  ZZ  |->  ( x  +  1
) ) `  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C ) `  A
) ) )
117, 8, 9, 10mp3an2i 1355 . . 3  |-  ( ph  ->  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `  suc  A )  =  ( ( x  e.  ZZ  |->  ( x  +  1
) ) `  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C ) `  A
) ) )
12 frec2uz.2 . . . 4  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
1312fveq1i 5579 . . 3  |-  ( G `
 suc  A )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `  suc  A )
1412fveq1i 5579 . . . 4  |-  ( G `
 A )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `  A )
1514fveq2i 5581 . . 3  |-  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  ( G `
 A ) )  =  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `
 (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `
 A ) )
1611, 13, 153eqtr4g 2263 . 2  |-  ( ph  ->  ( G `  suc  A )  =  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  ( G `
 A ) ) )
178, 12, 9frec2uzzd 10547 . . 3  |-  ( ph  ->  ( G `  A
)  e.  ZZ )
18 oveq1 5953 . . . 4  |-  ( z  =  ( G `  A )  ->  (
z  +  1 )  =  ( ( G `
 A )  +  1 ) )
192cbvmptv 4141 . . . 4  |-  ( x  e.  ZZ  |->  ( x  +  1 ) )  =  ( z  e.  ZZ  |->  ( z  +  1 ) )
2018, 19, 1fvmpt3 5660 . . 3  |-  ( ( G `  A )  e.  ZZ  ->  (
( x  e.  ZZ  |->  ( x  +  1
) ) `  ( G `  A )
)  =  ( ( G `  A )  +  1 ) )
2117, 20syl 14 . 2  |-  ( ph  ->  ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) `  ( G `  A ) )  =  ( ( G `  A )  +  1 ) )
2216, 21eqtrd 2238 1  |-  ( ph  ->  ( G `  suc  A )  =  ( ( G `  A )  +  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   A.wral 2484    |-> cmpt 4106   suc csuc 4413   omcom 4639   ` cfv 5272  (class class class)co 5946  freccfrec 6478   1c1 7928    + caddc 7930   ZZcz 9374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-recs 6393  df-frec 6479  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375
This theorem is referenced by:  frec2uzuzd  10549  frec2uzltd  10550  frec2uzrand  10552  frec2uzrdg  10556  frecuzrdgsuc  10561  frecuzrdgg  10563  frecfzennn  10573  1tonninf  10588  omgadd  10949  ennnfonelemkh  12816  ennnfonelemhf1o  12817  ennnfonelemnn0  12826  012of  15967  2o01f  15968  isomninnlem  16006  iswomninnlem  16025  ismkvnnlem  16028
  Copyright terms: Public domain W3C validator