Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > frec2uzsucd | Unicode version |
Description: The value of (see frec2uz0d 10298) at a successor. (Contributed by Jim Kingdon, 16-May-2020.) |
Ref | Expression |
---|---|
frec2uz.1 | |
frec2uz.2 | frec |
frec2uzzd.a |
Ref | Expression |
---|---|
frec2uzsucd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2z 9203 | . . . . . . 7 | |
2 | oveq1 5831 | . . . . . . . 8 | |
3 | eqid 2157 | . . . . . . . 8 | |
4 | 2, 3 | fvmptg 5544 | . . . . . . 7 |
5 | 1, 4 | mpdan 418 | . . . . . 6 |
6 | 5, 1 | eqeltrd 2234 | . . . . 5 |
7 | 6 | rgen 2510 | . . . 4 |
8 | frec2uz.1 | . . . 4 | |
9 | frec2uzzd.a | . . . 4 | |
10 | frecsuc 6354 | . . . 4 frec frec | |
11 | 7, 8, 9, 10 | mp3an2i 1324 | . . 3 frec frec |
12 | frec2uz.2 | . . . 4 frec | |
13 | 12 | fveq1i 5469 | . . 3 frec |
14 | 12 | fveq1i 5469 | . . . 4 frec |
15 | 14 | fveq2i 5471 | . . 3 frec |
16 | 11, 13, 15 | 3eqtr4g 2215 | . 2 |
17 | 8, 12, 9 | frec2uzzd 10299 | . . 3 |
18 | oveq1 5831 | . . . 4 | |
19 | 2 | cbvmptv 4060 | . . . 4 |
20 | 18, 19, 1 | fvmpt3 5547 | . . 3 |
21 | 17, 20 | syl 14 | . 2 |
22 | 16, 21 | eqtrd 2190 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1335 wcel 2128 wral 2435 cmpt 4025 csuc 4325 com 4549 cfv 5170 (class class class)co 5824 freccfrec 6337 c1 7733 caddc 7735 cz 9167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-iinf 4547 ax-cnex 7823 ax-resscn 7824 ax-1cn 7825 ax-1re 7826 ax-icn 7827 ax-addcl 7828 ax-addrcl 7829 ax-mulcl 7830 ax-addcom 7832 ax-addass 7834 ax-distr 7836 ax-i2m1 7837 ax-0id 7840 ax-rnegex 7841 ax-cnre 7843 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-iord 4326 df-on 4328 df-ilim 4329 df-suc 4331 df-iom 4550 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-f1 5175 df-fo 5176 df-f1o 5177 df-fv 5178 df-riota 5780 df-ov 5827 df-oprab 5828 df-mpo 5829 df-recs 6252 df-frec 6338 df-sub 8048 df-neg 8049 df-inn 8834 df-n0 9091 df-z 9168 |
This theorem is referenced by: frec2uzuzd 10301 frec2uzltd 10302 frec2uzrand 10304 frec2uzrdg 10308 frecuzrdgsuc 10313 frecuzrdgg 10315 frecfzennn 10325 1tonninf 10339 omgadd 10676 ennnfonelemkh 12141 ennnfonelemhf1o 12142 ennnfonelemnn0 12151 012of 13567 2o01f 13568 isomninnlem 13601 iswomninnlem 13620 ismkvnnlem 13623 |
Copyright terms: Public domain | W3C validator |