ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptd2 Unicode version

Theorem fvmptd2 5643
Description: Deduction version of fvmpt 5638 (where the definition of the mapping does not depend on the common antecedent  ph). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fvmptd2.1  |-  F  =  ( x  e.  D  |->  B )
fvmptd2.2  |-  ( (
ph  /\  x  =  A )  ->  B  =  C )
fvmptd2.3  |-  ( ph  ->  A  e.  D )
fvmptd2.4  |-  ( ph  ->  C  e.  V )
Assertion
Ref Expression
fvmptd2  |-  ( ph  ->  ( F `  A
)  =  C )
Distinct variable groups:    x, A    x, C    x, D    ph, x
Allowed substitution hints:    B( x)    F( x)    V( x)

Proof of Theorem fvmptd2
StepHypRef Expression
1 fvmptd2.1 . . 3  |-  F  =  ( x  e.  D  |->  B )
21a1i 9 . 2  |-  ( ph  ->  F  =  ( x  e.  D  |->  B ) )
3 fvmptd2.2 . 2  |-  ( (
ph  /\  x  =  A )  ->  B  =  C )
4 fvmptd2.3 . 2  |-  ( ph  ->  A  e.  D )
5 fvmptd2.4 . 2  |-  ( ph  ->  C  e.  V )
62, 3, 4, 5fvmptd 5642 1  |-  ( ph  ->  ( F `  A
)  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    |-> cmpt 4094   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266
This theorem is referenced by:  gausslemma2dlem2  15270  gausslemma2dlem3  15271
  Copyright terms: Public domain W3C validator