ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptd2 Unicode version

Theorem fvmptd2 5709
Description: Deduction version of fvmpt 5704 (where the definition of the mapping does not depend on the common antecedent  ph). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fvmptd2.1  |-  F  =  ( x  e.  D  |->  B )
fvmptd2.2  |-  ( (
ph  /\  x  =  A )  ->  B  =  C )
fvmptd2.3  |-  ( ph  ->  A  e.  D )
fvmptd2.4  |-  ( ph  ->  C  e.  V )
Assertion
Ref Expression
fvmptd2  |-  ( ph  ->  ( F `  A
)  =  C )
Distinct variable groups:    x, A    x, C    x, D    ph, x
Allowed substitution hints:    B( x)    F( x)    V( x)

Proof of Theorem fvmptd2
StepHypRef Expression
1 fvmptd2.1 . . 3  |-  F  =  ( x  e.  D  |->  B )
21a1i 9 . 2  |-  ( ph  ->  F  =  ( x  e.  D  |->  B ) )
3 fvmptd2.2 . 2  |-  ( (
ph  /\  x  =  A )  ->  B  =  C )
4 fvmptd2.3 . 2  |-  ( ph  ->  A  e.  D )
5 fvmptd2.4 . 2  |-  ( ph  ->  C  e.  V )
62, 3, 4, 5fvmptd 5708 1  |-  ( ph  ->  ( F `  A
)  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    |-> cmpt 4144   ` cfv 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-iota 5274  df-fun 5316  df-fv 5322
This theorem is referenced by:  gausslemma2dlem2  15726  gausslemma2dlem3  15727
  Copyright terms: Public domain W3C validator