ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptd2 Unicode version

Theorem fvmptd2 5671
Description: Deduction version of fvmpt 5666 (where the definition of the mapping does not depend on the common antecedent  ph). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fvmptd2.1  |-  F  =  ( x  e.  D  |->  B )
fvmptd2.2  |-  ( (
ph  /\  x  =  A )  ->  B  =  C )
fvmptd2.3  |-  ( ph  ->  A  e.  D )
fvmptd2.4  |-  ( ph  ->  C  e.  V )
Assertion
Ref Expression
fvmptd2  |-  ( ph  ->  ( F `  A
)  =  C )
Distinct variable groups:    x, A    x, C    x, D    ph, x
Allowed substitution hints:    B( x)    F( x)    V( x)

Proof of Theorem fvmptd2
StepHypRef Expression
1 fvmptd2.1 . . 3  |-  F  =  ( x  e.  D  |->  B )
21a1i 9 . 2  |-  ( ph  ->  F  =  ( x  e.  D  |->  B ) )
3 fvmptd2.2 . 2  |-  ( (
ph  /\  x  =  A )  ->  B  =  C )
4 fvmptd2.3 . 2  |-  ( ph  ->  A  e.  D )
5 fvmptd2.4 . 2  |-  ( ph  ->  C  e.  V )
62, 3, 4, 5fvmptd 5670 1  |-  ( ph  ->  ( F `  A
)  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177    |-> cmpt 4110   ` cfv 5277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3001  df-csb 3096  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-iota 5238  df-fun 5279  df-fv 5285
This theorem is referenced by:  gausslemma2dlem2  15589  gausslemma2dlem3  15590
  Copyright terms: Public domain W3C validator