ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2dlem3 Unicode version

Theorem gausslemma2dlem3 15179
Description: Lemma 3 for gausslemma2d 15185. (Contributed by AV, 4-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
gausslemma2d.h  |-  H  =  ( ( P  - 
1 )  /  2
)
gausslemma2d.r  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
gausslemma2d.m  |-  M  =  ( |_ `  ( P  /  4 ) )
Assertion
Ref Expression
gausslemma2dlem3  |-  ( ph  ->  A. k  e.  ( ( M  +  1 ) ... H ) ( R `  k
)  =  ( P  -  ( k  x.  2 ) ) )
Distinct variable groups:    x, H    x, P    ph, x    k, H    R, k    ph, k    x, M   
x, k
Allowed substitution hints:    P( k)    R( x)    M( k)

Proof of Theorem gausslemma2dlem3
StepHypRef Expression
1 gausslemma2d.r . . 3  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
2 oveq1 5925 . . . . . . 7  |-  ( x  =  k  ->  (
x  x.  2 )  =  ( k  x.  2 ) )
32breq1d 4039 . . . . . 6  |-  ( x  =  k  ->  (
( x  x.  2 )  <  ( P  /  2 )  <->  ( k  x.  2 )  <  ( P  /  2 ) ) )
42oveq2d 5934 . . . . . 6  |-  ( x  =  k  ->  ( P  -  ( x  x.  2 ) )  =  ( P  -  (
k  x.  2 ) ) )
53, 2, 4ifbieq12d 3583 . . . . 5  |-  ( x  =  k  ->  if ( ( x  x.  2 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) )  =  if ( ( k  x.  2 )  <  ( P  / 
2 ) ,  ( k  x.  2 ) ,  ( P  -  ( k  x.  2 ) ) ) )
65adantl 277 . . . 4  |-  ( ( ( ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  /\  x  =  k )  ->  if ( ( x  x.  2 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) )  =  if ( ( k  x.  2 )  <  ( P  / 
2 ) ,  ( k  x.  2 ) ,  ( P  -  ( k  x.  2 ) ) ) )
7 gausslemma2d.p . . . . . . . 8  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
87gausslemma2dlem0a 15165 . . . . . . 7  |-  ( ph  ->  P  e.  NN )
9 elfz2 10081 . . . . . . . . . 10  |-  ( k  e.  ( ( M  +  1 ) ... H )  <->  ( (
( M  +  1 )  e.  ZZ  /\  H  e.  ZZ  /\  k  e.  ZZ )  /\  (
( M  +  1 )  <_  k  /\  k  <_  H ) ) )
10 gausslemma2d.m . . . . . . . . . . . . . . . . 17  |-  M  =  ( |_ `  ( P  /  4 ) )
1110oveq1i 5928 . . . . . . . . . . . . . . . 16  |-  ( M  +  1 )  =  ( ( |_ `  ( P  /  4
) )  +  1 )
1211breq1i 4036 . . . . . . . . . . . . . . 15  |-  ( ( M  +  1 )  <_  k  <->  ( ( |_ `  ( P  / 
4 ) )  +  1 )  <_  k
)
13 nnz 9336 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( P  e.  NN  ->  P  e.  ZZ )
14 4nn 9145 . . . . . . . . . . . . . . . . . . . . . . 23  |-  4  e.  NN
15 znq 9689 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P  e.  ZZ  /\  4  e.  NN )  ->  ( P  /  4
)  e.  QQ )
1613, 14, 15sylancl 413 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( P  e.  NN  ->  ( P  /  4 )  e.  QQ )
1716adantl 277 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( k  e.  ZZ  /\  P  e.  NN )  ->  ( P  /  4
)  e.  QQ )
18 flqlelt 10345 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( P  /  4 )  e.  QQ  ->  (
( |_ `  ( P  /  4 ) )  <_  ( P  / 
4 )  /\  ( P  /  4 )  < 
( ( |_ `  ( P  /  4
) )  +  1 ) ) )
1917, 18syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  e.  ZZ  /\  P  e.  NN )  ->  ( ( |_ `  ( P  /  4
) )  <_  ( P  /  4 )  /\  ( P  /  4
)  <  ( ( |_ `  ( P  / 
4 ) )  +  1 ) ) )
20 nnre 8989 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( P  e.  NN  ->  P  e.  RR )
21 4re 9059 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  4  e.  RR
2221a1i 9 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( P  e.  NN  ->  4  e.  RR )
23 4ap0 9081 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  4 #  0
2423a1i 9 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( P  e.  NN  ->  4 #  0 )
2520, 22, 24redivclapd 8854 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( P  e.  NN  ->  ( P  /  4 )  e.  RR )
2625adantl 277 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( k  e.  ZZ  /\  P  e.  NN )  ->  ( P  /  4
)  e.  RR )
2716flqcld 10346 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( P  e.  NN  ->  ( |_ `  ( P  / 
4 ) )  e.  ZZ )
2827zred 9439 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( P  e.  NN  ->  ( |_ `  ( P  / 
4 ) )  e.  RR )
29 peano2re 8155 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( |_ `  ( P  /  4 ) )  e.  RR  ->  (
( |_ `  ( P  /  4 ) )  +  1 )  e.  RR )
3028, 29syl 14 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( P  e.  NN  ->  (
( |_ `  ( P  /  4 ) )  +  1 )  e.  RR )
3130adantl 277 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( k  e.  ZZ  /\  P  e.  NN )  ->  ( ( |_ `  ( P  /  4
) )  +  1 )  e.  RR )
32 zre 9321 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( k  e.  ZZ  ->  k  e.  RR )
3332adantr 276 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( k  e.  ZZ  /\  P  e.  NN )  ->  k  e.  RR )
34 ltleletr 8101 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( P  /  4
)  e.  RR  /\  ( ( |_ `  ( P  /  4
) )  +  1 )  e.  RR  /\  k  e.  RR )  ->  ( ( ( P  /  4 )  < 
( ( |_ `  ( P  /  4
) )  +  1 )  /\  ( ( |_ `  ( P  /  4 ) )  +  1 )  <_ 
k )  ->  ( P  /  4 )  <_ 
k ) )
3526, 31, 33, 34syl3anc 1249 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( k  e.  ZZ  /\  P  e.  NN )  ->  ( ( ( P  /  4 )  < 
( ( |_ `  ( P  /  4
) )  +  1 )  /\  ( ( |_ `  ( P  /  4 ) )  +  1 )  <_ 
k )  ->  ( P  /  4 )  <_ 
k ) )
3635expd 258 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( k  e.  ZZ  /\  P  e.  NN )  ->  ( ( P  / 
4 )  <  (
( |_ `  ( P  /  4 ) )  +  1 )  -> 
( ( ( |_
`  ( P  / 
4 ) )  +  1 )  <_  k  ->  ( P  /  4
)  <_  k )
) )
3736adantld 278 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  e.  ZZ  /\  P  e.  NN )  ->  ( ( ( |_
`  ( P  / 
4 ) )  <_ 
( P  /  4
)  /\  ( P  /  4 )  < 
( ( |_ `  ( P  /  4
) )  +  1 ) )  ->  (
( ( |_ `  ( P  /  4
) )  +  1 )  <_  k  ->  ( P  /  4 )  <_  k ) ) )
3819, 37mpd 13 . . . . . . . . . . . . . . . . . . 19  |-  ( ( k  e.  ZZ  /\  P  e.  NN )  ->  ( ( ( |_
`  ( P  / 
4 ) )  +  1 )  <_  k  ->  ( P  /  4
)  <_  k )
)
3938imp 124 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( k  e.  ZZ  /\  P  e.  NN )  /\  ( ( |_
`  ( P  / 
4 ) )  +  1 )  <_  k
)  ->  ( P  /  4 )  <_ 
k )
4020rehalfcld 9229 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( P  e.  NN  ->  ( P  /  2 )  e.  RR )
4140adantl 277 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( k  e.  ZZ  /\  P  e.  NN )  ->  ( P  /  2
)  e.  RR )
42 2re 9052 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  2  e.  RR
4342a1i 9 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  ZZ  ->  2  e.  RR )
4432, 43remulcld 8050 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  ZZ  ->  (
k  x.  2 )  e.  RR )
4544adantr 276 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( k  e.  ZZ  /\  P  e.  NN )  ->  ( k  x.  2 )  e.  RR )
46 2pos 9073 . . . . . . . . . . . . . . . . . . . . . . 23  |-  0  <  2
4742, 46pm3.2i 272 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  e.  RR  /\  0  <  2 )
4847a1i 9 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( k  e.  ZZ  /\  P  e.  NN )  ->  ( 2  e.  RR  /\  0  <  2 ) )
49 lediv1 8888 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( P  /  2
)  e.  RR  /\  ( k  x.  2 )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( ( P  /  2 )  <_ 
( k  x.  2 )  <->  ( ( P  /  2 )  / 
2 )  <_  (
( k  x.  2 )  /  2 ) ) )
5041, 45, 48, 49syl3anc 1249 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  e.  ZZ  /\  P  e.  NN )  ->  ( ( P  / 
2 )  <_  (
k  x.  2 )  <-> 
( ( P  / 
2 )  /  2
)  <_  ( (
k  x.  2 )  /  2 ) ) )
51 nncn 8990 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( P  e.  NN  ->  P  e.  CC )
52 2cnd 9055 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( P  e.  NN  ->  2  e.  CC )
53 2ap0 9075 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  2 #  0
5453a1i 9 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( P  e.  NN  ->  2 #  0 )
5551, 52, 52, 54, 54divdivap1d 8841 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( P  e.  NN  ->  (
( P  /  2
)  /  2 )  =  ( P  / 
( 2  x.  2 ) ) )
56 2t2e4 9136 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 2  x.  2 )  =  4
5756oveq2i 5929 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( P  /  ( 2  x.  2 ) )  =  ( P  /  4
)
5855, 57eqtrdi 2242 . . . . . . . . . . . . . . . . . . . . 21  |-  ( P  e.  NN  ->  (
( P  /  2
)  /  2 )  =  ( P  / 
4 ) )
59 zcn 9322 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  ZZ  ->  k  e.  CC )
60 2cnd 9055 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  ZZ  ->  2  e.  CC )
6153a1i 9 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  ZZ  ->  2 #  0 )
6259, 60, 61divcanap4d 8815 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  ZZ  ->  (
( k  x.  2 )  /  2 )  =  k )
6358, 62breqan12rd 4046 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  e.  ZZ  /\  P  e.  NN )  ->  ( ( ( P  /  2 )  / 
2 )  <_  (
( k  x.  2 )  /  2 )  <-> 
( P  /  4
)  <_  k )
)
6450, 63bitrd 188 . . . . . . . . . . . . . . . . . . 19  |-  ( ( k  e.  ZZ  /\  P  e.  NN )  ->  ( ( P  / 
2 )  <_  (
k  x.  2 )  <-> 
( P  /  4
)  <_  k )
)
6564adantr 276 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( k  e.  ZZ  /\  P  e.  NN )  /\  ( ( |_
`  ( P  / 
4 ) )  +  1 )  <_  k
)  ->  ( ( P  /  2 )  <_ 
( k  x.  2 )  <->  ( P  / 
4 )  <_  k
) )
6639, 65mpbird 167 . . . . . . . . . . . . . . . . 17  |-  ( ( ( k  e.  ZZ  /\  P  e.  NN )  /\  ( ( |_
`  ( P  / 
4 ) )  +  1 )  <_  k
)  ->  ( P  /  2 )  <_ 
( k  x.  2 ) )
6766exp31 364 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ZZ  ->  ( P  e.  NN  ->  ( ( ( |_ `  ( P  /  4
) )  +  1 )  <_  k  ->  ( P  /  2 )  <_  ( k  x.  2 ) ) ) )
6867com23 78 . . . . . . . . . . . . . . 15  |-  ( k  e.  ZZ  ->  (
( ( |_ `  ( P  /  4
) )  +  1 )  <_  k  ->  ( P  e.  NN  ->  ( P  /  2 )  <_  ( k  x.  2 ) ) ) )
6912, 68biimtrid 152 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  ->  (
( M  +  1 )  <_  k  ->  ( P  e.  NN  ->  ( P  /  2 )  <_  ( k  x.  2 ) ) ) )
70693ad2ant3 1022 . . . . . . . . . . . . 13  |-  ( ( ( M  +  1 )  e.  ZZ  /\  H  e.  ZZ  /\  k  e.  ZZ )  ->  (
( M  +  1 )  <_  k  ->  ( P  e.  NN  ->  ( P  /  2 )  <_  ( k  x.  2 ) ) ) )
7170com12 30 . . . . . . . . . . . 12  |-  ( ( M  +  1 )  <_  k  ->  (
( ( M  + 
1 )  e.  ZZ  /\  H  e.  ZZ  /\  k  e.  ZZ )  ->  ( P  e.  NN  ->  ( P  /  2
)  <_  ( k  x.  2 ) ) ) )
7271adantr 276 . . . . . . . . . . 11  |-  ( ( ( M  +  1 )  <_  k  /\  k  <_  H )  -> 
( ( ( M  +  1 )  e.  ZZ  /\  H  e.  ZZ  /\  k  e.  ZZ )  ->  ( P  e.  NN  ->  ( P  /  2 )  <_  ( k  x.  2 ) ) ) )
7372impcom 125 . . . . . . . . . 10  |-  ( ( ( ( M  + 
1 )  e.  ZZ  /\  H  e.  ZZ  /\  k  e.  ZZ )  /\  ( ( M  + 
1 )  <_  k  /\  k  <_  H ) )  ->  ( P  e.  NN  ->  ( P  /  2 )  <_ 
( k  x.  2 ) ) )
749, 73sylbi 121 . . . . . . . . 9  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  ( P  e.  NN  ->  ( P  /  2 )  <_  ( k  x.  2 ) ) )
7574impcom 125 . . . . . . . 8  |-  ( ( P  e.  NN  /\  k  e.  ( ( M  +  1 ) ... H ) )  ->  ( P  / 
2 )  <_  (
k  x.  2 ) )
76 elfzelz 10091 . . . . . . . . . . 11  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  k  e.  ZZ )
7776zred 9439 . . . . . . . . . 10  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  k  e.  RR )
7842a1i 9 . . . . . . . . . 10  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  2  e.  RR )
7977, 78remulcld 8050 . . . . . . . . 9  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  (
k  x.  2 )  e.  RR )
80 lenlt 8095 . . . . . . . . 9  |-  ( ( ( P  /  2
)  e.  RR  /\  ( k  x.  2 )  e.  RR )  ->  ( ( P  /  2 )  <_ 
( k  x.  2 )  <->  -.  ( k  x.  2 )  <  ( P  /  2 ) ) )
8140, 79, 80syl2an 289 . . . . . . . 8  |-  ( ( P  e.  NN  /\  k  e.  ( ( M  +  1 ) ... H ) )  ->  ( ( P  /  2 )  <_ 
( k  x.  2 )  <->  -.  ( k  x.  2 )  <  ( P  /  2 ) ) )
8275, 81mpbid 147 . . . . . . 7  |-  ( ( P  e.  NN  /\  k  e.  ( ( M  +  1 ) ... H ) )  ->  -.  ( k  x.  2 )  <  ( P  /  2 ) )
838, 82sylan 283 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  -.  ( k  x.  2 )  <  ( P  /  2 ) )
8483adantr 276 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  /\  x  =  k )  ->  -.  ( k  x.  2 )  <  ( P  /  2 ) )
8584iffalsed 3567 . . . 4  |-  ( ( ( ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  /\  x  =  k )  ->  if ( ( k  x.  2 )  <  ( P  /  2 ) ,  ( k  x.  2 ) ,  ( P  -  ( k  x.  2 ) ) )  =  ( P  -  ( k  x.  2 ) ) )
866, 85eqtrd 2226 . . 3  |-  ( ( ( ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  /\  x  =  k )  ->  if ( ( x  x.  2 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) )  =  ( P  -  ( k  x.  2 ) ) )
877, 10gausslemma2dlem0d 15168 . . . . . 6  |-  ( ph  ->  M  e.  NN0 )
88 nn0p1nn 9279 . . . . . . 7  |-  ( M  e.  NN0  ->  ( M  +  1 )  e.  NN )
89 nnuz 9628 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
9088, 89eleqtrdi 2286 . . . . . 6  |-  ( M  e.  NN0  ->  ( M  +  1 )  e.  ( ZZ>= `  1 )
)
9187, 90syl 14 . . . . 5  |-  ( ph  ->  ( M  +  1 )  e.  ( ZZ>= ` 
1 ) )
92 fzss1 10129 . . . . 5  |-  ( ( M  +  1 )  e.  ( ZZ>= `  1
)  ->  ( ( M  +  1 ) ... H )  C_  ( 1 ... H
) )
9391, 92syl 14 . . . 4  |-  ( ph  ->  ( ( M  + 
1 ) ... H
)  C_  ( 1 ... H ) )
9493sselda 3179 . . 3  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  k  e.  ( 1 ... H
) )
958nnzd 9438 . . . . 5  |-  ( ph  ->  P  e.  ZZ )
9695adantr 276 . . . 4  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  P  e.  ZZ )
9776adantl 277 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  k  e.  ZZ )
98 2z 9345 . . . . . 6  |-  2  e.  ZZ
9998a1i 9 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  2  e.  ZZ )
10097, 99zmulcld 9445 . . . 4  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  (
k  x.  2 )  e.  ZZ )
10196, 100zsubcld 9444 . . 3  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  ( P  -  ( k  x.  2 ) )  e.  ZZ )
1021, 86, 94, 101fvmptd2 5639 . 2  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  ( R `  k )  =  ( P  -  ( k  x.  2 ) ) )
103102ralrimiva 2567 1  |-  ( ph  ->  A. k  e.  ( ( M  +  1 ) ... H ) ( R `  k
)  =  ( P  -  ( k  x.  2 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472    \ cdif 3150    C_ wss 3153   ifcif 3557   {csn 3618   class class class wbr 4029    |-> cmpt 4090   ` cfv 5254  (class class class)co 5918   RRcr 7871   0cc0 7872   1c1 7873    + caddc 7875    x. cmul 7877    < clt 8054    <_ cle 8055    - cmin 8190   # cap 8600    / cdiv 8691   NNcn 8982   2c2 9033   4c4 9035   NN0cn0 9240   ZZcz 9317   ZZ>=cuz 9592   QQcq 9684   ...cfz 10074   |_cfl 10337   Primecprime 12245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-2o 6470  df-er 6587  df-en 6795  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fl 10339  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-prm 12246
This theorem is referenced by:  gausslemma2dlem5a  15181  gausslemma2dlem6  15183
  Copyright terms: Public domain W3C validator