ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2dlem2 Unicode version

Theorem gausslemma2dlem2 15126
Description: Lemma 2 for gausslemma2d 15133. (Contributed by AV, 4-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
gausslemma2d.h  |-  H  =  ( ( P  - 
1 )  /  2
)
gausslemma2d.r  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
gausslemma2d.m  |-  M  =  ( |_ `  ( P  /  4 ) )
Assertion
Ref Expression
gausslemma2dlem2  |-  ( ph  ->  A. k  e.  ( 1 ... M ) ( R `  k
)  =  ( k  x.  2 ) )
Distinct variable groups:    x, H    x, P    ph, x    k, H    R, k    ph, k    x, M   
x, k
Allowed substitution hints:    P( k)    R( x)    M( k)

Proof of Theorem gausslemma2dlem2
StepHypRef Expression
1 gausslemma2d.r . . 3  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
2 oveq1 5917 . . . . . . 7  |-  ( x  =  k  ->  (
x  x.  2 )  =  ( k  x.  2 ) )
32breq1d 4039 . . . . . 6  |-  ( x  =  k  ->  (
( x  x.  2 )  <  ( P  /  2 )  <->  ( k  x.  2 )  <  ( P  /  2 ) ) )
42oveq2d 5926 . . . . . 6  |-  ( x  =  k  ->  ( P  -  ( x  x.  2 ) )  =  ( P  -  (
k  x.  2 ) ) )
53, 2, 4ifbieq12d 3583 . . . . 5  |-  ( x  =  k  ->  if ( ( x  x.  2 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) )  =  if ( ( k  x.  2 )  <  ( P  / 
2 ) ,  ( k  x.  2 ) ,  ( P  -  ( k  x.  2 ) ) ) )
65adantl 277 . . . 4  |-  ( ( ( ph  /\  k  e.  ( 1 ... M
) )  /\  x  =  k )  ->  if ( ( x  x.  2 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) )  =  if ( ( k  x.  2 )  <  ( P  / 
2 ) ,  ( k  x.  2 ) ,  ( P  -  ( k  x.  2 ) ) ) )
7 elfz1b 10146 . . . . . . . 8  |-  ( k  e.  ( 1 ... M )  <->  ( k  e.  NN  /\  M  e.  NN  /\  k  <_  M ) )
8 nnre 8979 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  e.  RR )
98adantr 276 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  k  e.  RR )
10 nnre 8979 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  M  e.  RR )
1110adantl 277 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  M  e.  RR )
12 2re 9042 . . . . . . . . . . . . 13  |-  2  e.  RR
13 2pos 9063 . . . . . . . . . . . . 13  |-  0  <  2
1412, 13pm3.2i 272 . . . . . . . . . . . 12  |-  ( 2  e.  RR  /\  0  <  2 )
1514a1i 9 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  ( 2  e.  RR  /\  0  <  2 ) )
16 lemul1 8602 . . . . . . . . . . 11  |-  ( ( k  e.  RR  /\  M  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( k  <_  M 
<->  ( k  x.  2 )  <_  ( M  x.  2 ) ) )
179, 11, 15, 16syl3anc 1249 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  ( k  <_  M  <->  ( k  x.  2 )  <_  ( M  x.  2 ) ) )
18 gausslemma2d.p . . . . . . . . . . . . . . 15  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
19 gausslemma2d.m . . . . . . . . . . . . . . 15  |-  M  =  ( |_ `  ( P  /  4 ) )
2018, 19gausslemma2dlem0e 15117 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M  x.  2 )  <  ( P  /  2 ) )
2120adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  NN  /\  M  e.  NN )  /\  ph )  -> 
( M  x.  2 )  <  ( P  /  2 ) )
2212a1i 9 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  2  e.  RR )
238, 22remulcld 8040 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
k  x.  2 )  e.  RR )
2423adantr 276 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  ( k  x.  2 )  e.  RR )
2512a1i 9 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN  ->  2  e.  RR )
2610, 25remulcld 8040 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  ( M  x.  2 )  e.  RR )
2726adantl 277 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  ( M  x.  2 )  e.  RR )
2818gausslemma2dlem0a 15113 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  P  e.  NN )
2928nnred 8985 . . . . . . . . . . . . . . 15  |-  ( ph  ->  P  e.  RR )
3029rehalfcld 9219 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( P  /  2
)  e.  RR )
31 lelttr 8098 . . . . . . . . . . . . . 14  |-  ( ( ( k  x.  2 )  e.  RR  /\  ( M  x.  2
)  e.  RR  /\  ( P  /  2
)  e.  RR )  ->  ( ( ( k  x.  2 )  <_  ( M  x.  2 )  /\  ( M  x.  2 )  <  ( P  / 
2 ) )  -> 
( k  x.  2 )  <  ( P  /  2 ) ) )
3224, 27, 30, 31syl2an3an 1309 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  NN  /\  M  e.  NN )  /\  ph )  -> 
( ( ( k  x.  2 )  <_ 
( M  x.  2 )  /\  ( M  x.  2 )  < 
( P  /  2
) )  ->  (
k  x.  2 )  <  ( P  / 
2 ) ) )
3321, 32mpan2d 428 . . . . . . . . . . . 12  |-  ( ( ( k  e.  NN  /\  M  e.  NN )  /\  ph )  -> 
( ( k  x.  2 )  <_  ( M  x.  2 )  ->  ( k  x.  2 )  <  ( P  /  2 ) ) )
3433ex 115 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  ( ph  ->  (
( k  x.  2 )  <_  ( M  x.  2 )  ->  (
k  x.  2 )  <  ( P  / 
2 ) ) ) )
3534com23 78 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  ( ( k  x.  2 )  <_  ( M  x.  2 )  ->  ( ph  ->  ( k  x.  2 )  <  ( P  / 
2 ) ) ) )
3617, 35sylbid 150 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  ( k  <_  M  ->  ( ph  ->  (
k  x.  2 )  <  ( P  / 
2 ) ) ) )
37363impia 1202 . . . . . . . 8  |-  ( ( k  e.  NN  /\  M  e.  NN  /\  k  <_  M )  ->  ( ph  ->  ( k  x.  2 )  <  ( P  /  2 ) ) )
387, 37sylbi 121 . . . . . . 7  |-  ( k  e.  ( 1 ... M )  ->  ( ph  ->  ( k  x.  2 )  <  ( P  /  2 ) ) )
3938impcom 125 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  (
k  x.  2 )  <  ( P  / 
2 ) )
4039adantr 276 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( 1 ... M
) )  /\  x  =  k )  -> 
( k  x.  2 )  <  ( P  /  2 ) )
4140iftrued 3564 . . . 4  |-  ( ( ( ph  /\  k  e.  ( 1 ... M
) )  /\  x  =  k )  ->  if ( ( k  x.  2 )  <  ( P  /  2 ) ,  ( k  x.  2 ) ,  ( P  -  ( k  x.  2 ) ) )  =  ( k  x.  2 ) )
426, 41eqtrd 2226 . . 3  |-  ( ( ( ph  /\  k  e.  ( 1 ... M
) )  /\  x  =  k )  ->  if ( ( x  x.  2 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) )  =  ( k  x.  2 ) )
4318, 19gausslemma2dlem0d 15116 . . . . . . 7  |-  ( ph  ->  M  e.  NN0 )
4443nn0zd 9427 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
45 gausslemma2d.h . . . . . . . 8  |-  H  =  ( ( P  - 
1 )  /  2
)
4618, 45gausslemma2dlem0b 15114 . . . . . . 7  |-  ( ph  ->  H  e.  NN )
4746nnzd 9428 . . . . . 6  |-  ( ph  ->  H  e.  ZZ )
4818, 19, 45gausslemma2dlem0g 15119 . . . . . 6  |-  ( ph  ->  M  <_  H )
49 eluz2 9588 . . . . . 6  |-  ( H  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  H  e.  ZZ  /\  M  <_  H ) )
5044, 47, 48, 49syl3anbrc 1183 . . . . 5  |-  ( ph  ->  H  e.  ( ZZ>= `  M ) )
51 fzss2 10120 . . . . 5  |-  ( H  e.  ( ZZ>= `  M
)  ->  ( 1 ... M )  C_  ( 1 ... H
) )
5250, 51syl 14 . . . 4  |-  ( ph  ->  ( 1 ... M
)  C_  ( 1 ... H ) )
5352sselda 3179 . . 3  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  k  e.  ( 1 ... H
) )
5453elfzelzd 10082 . . . 4  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  k  e.  ZZ )
55 2z 9335 . . . . 5  |-  2  e.  ZZ
5655a1i 9 . . . 4  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  2  e.  ZZ )
5754, 56zmulcld 9435 . . 3  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  (
k  x.  2 )  e.  ZZ )
581, 42, 53, 57fvmptd2 5631 . 2  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  ( R `  k )  =  ( k  x.  2 ) )
5958ralrimiva 2567 1  |-  ( ph  ->  A. k  e.  ( 1 ... M ) ( R `  k
)  =  ( k  x.  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472    \ cdif 3150    C_ wss 3153   ifcif 3557   {csn 3618   class class class wbr 4029    |-> cmpt 4090   ` cfv 5246  (class class class)co 5910   RRcr 7861   0cc0 7862   1c1 7863    x. cmul 7867    < clt 8044    <_ cle 8045    - cmin 8180    / cdiv 8681   NNcn 8972   2c2 9023   4c4 9025   ZZcz 9307   ZZ>=cuz 9582   ...cfz 10064   |_cfl 10327   Primecprime 12235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4565  ax-iinf 4616  ax-cnex 7953  ax-resscn 7954  ax-1cn 7955  ax-1re 7956  ax-icn 7957  ax-addcl 7958  ax-addrcl 7959  ax-mulcl 7960  ax-mulrcl 7961  ax-addcom 7962  ax-mulcom 7963  ax-addass 7964  ax-mulass 7965  ax-distr 7966  ax-i2m1 7967  ax-0lt1 7968  ax-1rid 7969  ax-0id 7970  ax-rnegex 7971  ax-precex 7972  ax-cnre 7973  ax-pre-ltirr 7974  ax-pre-ltwlin 7975  ax-pre-lttrn 7976  ax-pre-apti 7977  ax-pre-ltadd 7978  ax-pre-mulgt0 7979  ax-pre-mulext 7980  ax-arch 7981  ax-caucvg 7982
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4322  df-po 4325  df-iso 4326  df-iord 4395  df-on 4397  df-ilim 4398  df-suc 4400  df-iom 4619  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-iota 5207  df-fun 5248  df-fn 5249  df-f 5250  df-f1 5251  df-fo 5252  df-f1o 5253  df-fv 5254  df-riota 5865  df-ov 5913  df-oprab 5914  df-mpo 5915  df-1st 6184  df-2nd 6185  df-recs 6349  df-frec 6435  df-1o 6460  df-2o 6461  df-er 6578  df-en 6786  df-pnf 8046  df-mnf 8047  df-xr 8048  df-ltxr 8049  df-le 8050  df-sub 8182  df-neg 8183  df-reap 8584  df-ap 8591  df-div 8682  df-inn 8973  df-2 9031  df-3 9032  df-4 9033  df-n0 9231  df-z 9308  df-uz 9583  df-q 9675  df-rp 9710  df-fz 10065  df-fl 10329  df-seqfrec 10509  df-exp 10600  df-cj 10976  df-re 10977  df-im 10978  df-rsqrt 11132  df-abs 11133  df-dvds 11921  df-prm 12236
This theorem is referenced by:  gausslemma2dlem6  15131
  Copyright terms: Public domain W3C validator