ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2dlem2 Unicode version

Theorem gausslemma2dlem2 15726
Description: Lemma 2 for gausslemma2d 15733. (Contributed by AV, 4-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
gausslemma2d.h  |-  H  =  ( ( P  - 
1 )  /  2
)
gausslemma2d.r  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
gausslemma2d.m  |-  M  =  ( |_ `  ( P  /  4 ) )
Assertion
Ref Expression
gausslemma2dlem2  |-  ( ph  ->  A. k  e.  ( 1 ... M ) ( R `  k
)  =  ( k  x.  2 ) )
Distinct variable groups:    x, H    x, P    ph, x    k, H    R, k    ph, k    x, M   
x, k
Allowed substitution hints:    P( k)    R( x)    M( k)

Proof of Theorem gausslemma2dlem2
StepHypRef Expression
1 gausslemma2d.r . . 3  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
2 oveq1 6001 . . . . . . 7  |-  ( x  =  k  ->  (
x  x.  2 )  =  ( k  x.  2 ) )
32breq1d 4092 . . . . . 6  |-  ( x  =  k  ->  (
( x  x.  2 )  <  ( P  /  2 )  <->  ( k  x.  2 )  <  ( P  /  2 ) ) )
42oveq2d 6010 . . . . . 6  |-  ( x  =  k  ->  ( P  -  ( x  x.  2 ) )  =  ( P  -  (
k  x.  2 ) ) )
53, 2, 4ifbieq12d 3629 . . . . 5  |-  ( x  =  k  ->  if ( ( x  x.  2 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) )  =  if ( ( k  x.  2 )  <  ( P  / 
2 ) ,  ( k  x.  2 ) ,  ( P  -  ( k  x.  2 ) ) ) )
65adantl 277 . . . 4  |-  ( ( ( ph  /\  k  e.  ( 1 ... M
) )  /\  x  =  k )  ->  if ( ( x  x.  2 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) )  =  if ( ( k  x.  2 )  <  ( P  / 
2 ) ,  ( k  x.  2 ) ,  ( P  -  ( k  x.  2 ) ) ) )
7 elfz1b 10274 . . . . . . . 8  |-  ( k  e.  ( 1 ... M )  <->  ( k  e.  NN  /\  M  e.  NN  /\  k  <_  M ) )
8 nnre 9105 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  e.  RR )
98adantr 276 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  k  e.  RR )
10 nnre 9105 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  M  e.  RR )
1110adantl 277 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  M  e.  RR )
12 2re 9168 . . . . . . . . . . . . 13  |-  2  e.  RR
13 2pos 9189 . . . . . . . . . . . . 13  |-  0  <  2
1412, 13pm3.2i 272 . . . . . . . . . . . 12  |-  ( 2  e.  RR  /\  0  <  2 )
1514a1i 9 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  ( 2  e.  RR  /\  0  <  2 ) )
16 lemul1 8728 . . . . . . . . . . 11  |-  ( ( k  e.  RR  /\  M  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( k  <_  M 
<->  ( k  x.  2 )  <_  ( M  x.  2 ) ) )
179, 11, 15, 16syl3anc 1271 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  ( k  <_  M  <->  ( k  x.  2 )  <_  ( M  x.  2 ) ) )
18 gausslemma2d.p . . . . . . . . . . . . . . 15  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
19 gausslemma2d.m . . . . . . . . . . . . . . 15  |-  M  =  ( |_ `  ( P  /  4 ) )
2018, 19gausslemma2dlem0e 15717 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M  x.  2 )  <  ( P  /  2 ) )
2120adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  NN  /\  M  e.  NN )  /\  ph )  -> 
( M  x.  2 )  <  ( P  /  2 ) )
2212a1i 9 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  2  e.  RR )
238, 22remulcld 8165 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
k  x.  2 )  e.  RR )
2423adantr 276 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  ( k  x.  2 )  e.  RR )
2512a1i 9 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN  ->  2  e.  RR )
2610, 25remulcld 8165 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  ( M  x.  2 )  e.  RR )
2726adantl 277 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  ( M  x.  2 )  e.  RR )
2818gausslemma2dlem0a 15713 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  P  e.  NN )
2928nnred 9111 . . . . . . . . . . . . . . 15  |-  ( ph  ->  P  e.  RR )
3029rehalfcld 9346 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( P  /  2
)  e.  RR )
31 lelttr 8223 . . . . . . . . . . . . . 14  |-  ( ( ( k  x.  2 )  e.  RR  /\  ( M  x.  2
)  e.  RR  /\  ( P  /  2
)  e.  RR )  ->  ( ( ( k  x.  2 )  <_  ( M  x.  2 )  /\  ( M  x.  2 )  <  ( P  / 
2 ) )  -> 
( k  x.  2 )  <  ( P  /  2 ) ) )
3224, 27, 30, 31syl2an3an 1332 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  NN  /\  M  e.  NN )  /\  ph )  -> 
( ( ( k  x.  2 )  <_ 
( M  x.  2 )  /\  ( M  x.  2 )  < 
( P  /  2
) )  ->  (
k  x.  2 )  <  ( P  / 
2 ) ) )
3321, 32mpan2d 428 . . . . . . . . . . . 12  |-  ( ( ( k  e.  NN  /\  M  e.  NN )  /\  ph )  -> 
( ( k  x.  2 )  <_  ( M  x.  2 )  ->  ( k  x.  2 )  <  ( P  /  2 ) ) )
3433ex 115 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  ( ph  ->  (
( k  x.  2 )  <_  ( M  x.  2 )  ->  (
k  x.  2 )  <  ( P  / 
2 ) ) ) )
3534com23 78 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  ( ( k  x.  2 )  <_  ( M  x.  2 )  ->  ( ph  ->  ( k  x.  2 )  <  ( P  / 
2 ) ) ) )
3617, 35sylbid 150 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  ( k  <_  M  ->  ( ph  ->  (
k  x.  2 )  <  ( P  / 
2 ) ) ) )
37363impia 1224 . . . . . . . 8  |-  ( ( k  e.  NN  /\  M  e.  NN  /\  k  <_  M )  ->  ( ph  ->  ( k  x.  2 )  <  ( P  /  2 ) ) )
387, 37sylbi 121 . . . . . . 7  |-  ( k  e.  ( 1 ... M )  ->  ( ph  ->  ( k  x.  2 )  <  ( P  /  2 ) ) )
3938impcom 125 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  (
k  x.  2 )  <  ( P  / 
2 ) )
4039adantr 276 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( 1 ... M
) )  /\  x  =  k )  -> 
( k  x.  2 )  <  ( P  /  2 ) )
4140iftrued 3609 . . . 4  |-  ( ( ( ph  /\  k  e.  ( 1 ... M
) )  /\  x  =  k )  ->  if ( ( k  x.  2 )  <  ( P  /  2 ) ,  ( k  x.  2 ) ,  ( P  -  ( k  x.  2 ) ) )  =  ( k  x.  2 ) )
426, 41eqtrd 2262 . . 3  |-  ( ( ( ph  /\  k  e.  ( 1 ... M
) )  /\  x  =  k )  ->  if ( ( x  x.  2 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) )  =  ( k  x.  2 ) )
4318, 19gausslemma2dlem0d 15716 . . . . . . 7  |-  ( ph  ->  M  e.  NN0 )
4443nn0zd 9555 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
45 gausslemma2d.h . . . . . . . 8  |-  H  =  ( ( P  - 
1 )  /  2
)
4618, 45gausslemma2dlem0b 15714 . . . . . . 7  |-  ( ph  ->  H  e.  NN )
4746nnzd 9556 . . . . . 6  |-  ( ph  ->  H  e.  ZZ )
4818, 19, 45gausslemma2dlem0g 15719 . . . . . 6  |-  ( ph  ->  M  <_  H )
49 eluz2 9716 . . . . . 6  |-  ( H  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  H  e.  ZZ  /\  M  <_  H ) )
5044, 47, 48, 49syl3anbrc 1205 . . . . 5  |-  ( ph  ->  H  e.  ( ZZ>= `  M ) )
51 fzss2 10248 . . . . 5  |-  ( H  e.  ( ZZ>= `  M
)  ->  ( 1 ... M )  C_  ( 1 ... H
) )
5250, 51syl 14 . . . 4  |-  ( ph  ->  ( 1 ... M
)  C_  ( 1 ... H ) )
5352sselda 3224 . . 3  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  k  e.  ( 1 ... H
) )
5453elfzelzd 10210 . . . 4  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  k  e.  ZZ )
55 2z 9462 . . . . 5  |-  2  e.  ZZ
5655a1i 9 . . . 4  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  2  e.  ZZ )
5754, 56zmulcld 9563 . . 3  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  (
k  x.  2 )  e.  ZZ )
581, 42, 53, 57fvmptd2 5709 . 2  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  ( R `  k )  =  ( k  x.  2 ) )
5958ralrimiva 2603 1  |-  ( ph  ->  A. k  e.  ( 1 ... M ) ( R `  k
)  =  ( k  x.  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508    \ cdif 3194    C_ wss 3197   ifcif 3602   {csn 3666   class class class wbr 4082    |-> cmpt 4144   ` cfv 5314  (class class class)co 5994   RRcr 7986   0cc0 7987   1c1 7988    x. cmul 7992    < clt 8169    <_ cle 8170    - cmin 8305    / cdiv 8807   NNcn 9098   2c2 9149   4c4 9151   ZZcz 9434   ZZ>=cuz 9710   ...cfz 10192   |_cfl 10475   Primecprime 12615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-1o 6552  df-2o 6553  df-er 6670  df-en 6878  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fl 10477  df-seqfrec 10657  df-exp 10748  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-dvds 12285  df-prm 12616
This theorem is referenced by:  gausslemma2dlem6  15731
  Copyright terms: Public domain W3C validator