ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2dlem2 Unicode version

Theorem gausslemma2dlem2 15609
Description: Lemma 2 for gausslemma2d 15616. (Contributed by AV, 4-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
gausslemma2d.h  |-  H  =  ( ( P  - 
1 )  /  2
)
gausslemma2d.r  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
gausslemma2d.m  |-  M  =  ( |_ `  ( P  /  4 ) )
Assertion
Ref Expression
gausslemma2dlem2  |-  ( ph  ->  A. k  e.  ( 1 ... M ) ( R `  k
)  =  ( k  x.  2 ) )
Distinct variable groups:    x, H    x, P    ph, x    k, H    R, k    ph, k    x, M   
x, k
Allowed substitution hints:    P( k)    R( x)    M( k)

Proof of Theorem gausslemma2dlem2
StepHypRef Expression
1 gausslemma2d.r . . 3  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
2 oveq1 5963 . . . . . . 7  |-  ( x  =  k  ->  (
x  x.  2 )  =  ( k  x.  2 ) )
32breq1d 4060 . . . . . 6  |-  ( x  =  k  ->  (
( x  x.  2 )  <  ( P  /  2 )  <->  ( k  x.  2 )  <  ( P  /  2 ) ) )
42oveq2d 5972 . . . . . 6  |-  ( x  =  k  ->  ( P  -  ( x  x.  2 ) )  =  ( P  -  (
k  x.  2 ) ) )
53, 2, 4ifbieq12d 3601 . . . . 5  |-  ( x  =  k  ->  if ( ( x  x.  2 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) )  =  if ( ( k  x.  2 )  <  ( P  / 
2 ) ,  ( k  x.  2 ) ,  ( P  -  ( k  x.  2 ) ) ) )
65adantl 277 . . . 4  |-  ( ( ( ph  /\  k  e.  ( 1 ... M
) )  /\  x  =  k )  ->  if ( ( x  x.  2 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) )  =  if ( ( k  x.  2 )  <  ( P  / 
2 ) ,  ( k  x.  2 ) ,  ( P  -  ( k  x.  2 ) ) ) )
7 elfz1b 10227 . . . . . . . 8  |-  ( k  e.  ( 1 ... M )  <->  ( k  e.  NN  /\  M  e.  NN  /\  k  <_  M ) )
8 nnre 9058 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  e.  RR )
98adantr 276 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  k  e.  RR )
10 nnre 9058 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  M  e.  RR )
1110adantl 277 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  M  e.  RR )
12 2re 9121 . . . . . . . . . . . . 13  |-  2  e.  RR
13 2pos 9142 . . . . . . . . . . . . 13  |-  0  <  2
1412, 13pm3.2i 272 . . . . . . . . . . . 12  |-  ( 2  e.  RR  /\  0  <  2 )
1514a1i 9 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  ( 2  e.  RR  /\  0  <  2 ) )
16 lemul1 8681 . . . . . . . . . . 11  |-  ( ( k  e.  RR  /\  M  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( k  <_  M 
<->  ( k  x.  2 )  <_  ( M  x.  2 ) ) )
179, 11, 15, 16syl3anc 1250 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  ( k  <_  M  <->  ( k  x.  2 )  <_  ( M  x.  2 ) ) )
18 gausslemma2d.p . . . . . . . . . . . . . . 15  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
19 gausslemma2d.m . . . . . . . . . . . . . . 15  |-  M  =  ( |_ `  ( P  /  4 ) )
2018, 19gausslemma2dlem0e 15600 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M  x.  2 )  <  ( P  /  2 ) )
2120adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  NN  /\  M  e.  NN )  /\  ph )  -> 
( M  x.  2 )  <  ( P  /  2 ) )
2212a1i 9 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  2  e.  RR )
238, 22remulcld 8118 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
k  x.  2 )  e.  RR )
2423adantr 276 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  ( k  x.  2 )  e.  RR )
2512a1i 9 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN  ->  2  e.  RR )
2610, 25remulcld 8118 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  ( M  x.  2 )  e.  RR )
2726adantl 277 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  ( M  x.  2 )  e.  RR )
2818gausslemma2dlem0a 15596 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  P  e.  NN )
2928nnred 9064 . . . . . . . . . . . . . . 15  |-  ( ph  ->  P  e.  RR )
3029rehalfcld 9299 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( P  /  2
)  e.  RR )
31 lelttr 8176 . . . . . . . . . . . . . 14  |-  ( ( ( k  x.  2 )  e.  RR  /\  ( M  x.  2
)  e.  RR  /\  ( P  /  2
)  e.  RR )  ->  ( ( ( k  x.  2 )  <_  ( M  x.  2 )  /\  ( M  x.  2 )  <  ( P  / 
2 ) )  -> 
( k  x.  2 )  <  ( P  /  2 ) ) )
3224, 27, 30, 31syl2an3an 1311 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  NN  /\  M  e.  NN )  /\  ph )  -> 
( ( ( k  x.  2 )  <_ 
( M  x.  2 )  /\  ( M  x.  2 )  < 
( P  /  2
) )  ->  (
k  x.  2 )  <  ( P  / 
2 ) ) )
3321, 32mpan2d 428 . . . . . . . . . . . 12  |-  ( ( ( k  e.  NN  /\  M  e.  NN )  /\  ph )  -> 
( ( k  x.  2 )  <_  ( M  x.  2 )  ->  ( k  x.  2 )  <  ( P  /  2 ) ) )
3433ex 115 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  ( ph  ->  (
( k  x.  2 )  <_  ( M  x.  2 )  ->  (
k  x.  2 )  <  ( P  / 
2 ) ) ) )
3534com23 78 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  ( ( k  x.  2 )  <_  ( M  x.  2 )  ->  ( ph  ->  ( k  x.  2 )  <  ( P  / 
2 ) ) ) )
3617, 35sylbid 150 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  M  e.  NN )  ->  ( k  <_  M  ->  ( ph  ->  (
k  x.  2 )  <  ( P  / 
2 ) ) ) )
37363impia 1203 . . . . . . . 8  |-  ( ( k  e.  NN  /\  M  e.  NN  /\  k  <_  M )  ->  ( ph  ->  ( k  x.  2 )  <  ( P  /  2 ) ) )
387, 37sylbi 121 . . . . . . 7  |-  ( k  e.  ( 1 ... M )  ->  ( ph  ->  ( k  x.  2 )  <  ( P  /  2 ) ) )
3938impcom 125 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  (
k  x.  2 )  <  ( P  / 
2 ) )
4039adantr 276 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( 1 ... M
) )  /\  x  =  k )  -> 
( k  x.  2 )  <  ( P  /  2 ) )
4140iftrued 3582 . . . 4  |-  ( ( ( ph  /\  k  e.  ( 1 ... M
) )  /\  x  =  k )  ->  if ( ( k  x.  2 )  <  ( P  /  2 ) ,  ( k  x.  2 ) ,  ( P  -  ( k  x.  2 ) ) )  =  ( k  x.  2 ) )
426, 41eqtrd 2239 . . 3  |-  ( ( ( ph  /\  k  e.  ( 1 ... M
) )  /\  x  =  k )  ->  if ( ( x  x.  2 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) )  =  ( k  x.  2 ) )
4318, 19gausslemma2dlem0d 15599 . . . . . . 7  |-  ( ph  ->  M  e.  NN0 )
4443nn0zd 9508 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
45 gausslemma2d.h . . . . . . . 8  |-  H  =  ( ( P  - 
1 )  /  2
)
4618, 45gausslemma2dlem0b 15597 . . . . . . 7  |-  ( ph  ->  H  e.  NN )
4746nnzd 9509 . . . . . 6  |-  ( ph  ->  H  e.  ZZ )
4818, 19, 45gausslemma2dlem0g 15602 . . . . . 6  |-  ( ph  ->  M  <_  H )
49 eluz2 9669 . . . . . 6  |-  ( H  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  H  e.  ZZ  /\  M  <_  H ) )
5044, 47, 48, 49syl3anbrc 1184 . . . . 5  |-  ( ph  ->  H  e.  ( ZZ>= `  M ) )
51 fzss2 10201 . . . . 5  |-  ( H  e.  ( ZZ>= `  M
)  ->  ( 1 ... M )  C_  ( 1 ... H
) )
5250, 51syl 14 . . . 4  |-  ( ph  ->  ( 1 ... M
)  C_  ( 1 ... H ) )
5352sselda 3197 . . 3  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  k  e.  ( 1 ... H
) )
5453elfzelzd 10163 . . . 4  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  k  e.  ZZ )
55 2z 9415 . . . . 5  |-  2  e.  ZZ
5655a1i 9 . . . 4  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  2  e.  ZZ )
5754, 56zmulcld 9516 . . 3  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  (
k  x.  2 )  e.  ZZ )
581, 42, 53, 57fvmptd2 5673 . 2  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  ( R `  k )  =  ( k  x.  2 ) )
5958ralrimiva 2580 1  |-  ( ph  ->  A. k  e.  ( 1 ... M ) ( R `  k
)  =  ( k  x.  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177   A.wral 2485    \ cdif 3167    C_ wss 3170   ifcif 3575   {csn 3637   class class class wbr 4050    |-> cmpt 4112   ` cfv 5279  (class class class)co 5956   RRcr 7939   0cc0 7940   1c1 7941    x. cmul 7945    < clt 8122    <_ cle 8123    - cmin 8258    / cdiv 8760   NNcn 9051   2c2 9102   4c4 9104   ZZcz 9387   ZZ>=cuz 9663   ...cfz 10145   |_cfl 10428   Primecprime 12499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-mulrcl 8039  ax-addcom 8040  ax-mulcom 8041  ax-addass 8042  ax-mulass 8043  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-1rid 8047  ax-0id 8048  ax-rnegex 8049  ax-precex 8050  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056  ax-pre-mulgt0 8057  ax-pre-mulext 8058  ax-arch 8059  ax-caucvg 8060
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-po 4350  df-iso 4351  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-frec 6489  df-1o 6514  df-2o 6515  df-er 6632  df-en 6840  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-reap 8663  df-ap 8670  df-div 8761  df-inn 9052  df-2 9110  df-3 9111  df-4 9112  df-n0 9311  df-z 9388  df-uz 9664  df-q 9756  df-rp 9791  df-fz 10146  df-fl 10430  df-seqfrec 10610  df-exp 10701  df-cj 11223  df-re 11224  df-im 11225  df-rsqrt 11379  df-abs 11380  df-dvds 12169  df-prm 12500
This theorem is referenced by:  gausslemma2dlem6  15614
  Copyright terms: Public domain W3C validator