![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvmptd2 | GIF version |
Description: Deduction version of fvmpt 5638 (where the definition of the mapping does not depend on the common antecedent 𝜑). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
fvmptd2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
fvmptd2.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
fvmptd2.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
fvmptd2.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
Ref | Expression |
---|---|
fvmptd2 | ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptd2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵)) |
3 | fvmptd2.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
4 | fvmptd2.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
5 | fvmptd2.4 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
6 | 2, 3, 4, 5 | fvmptd 5642 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ↦ cmpt 4094 ‘cfv 5258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 |
This theorem is referenced by: gausslemma2dlem2 15270 gausslemma2dlem3 15271 |
Copyright terms: Public domain | W3C validator |