ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvtp1 Unicode version

Theorem fvtp1 5797
Description: The first value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
fvtp1.1  |-  A  e. 
_V
fvtp1.4  |-  D  e. 
_V
Assertion
Ref Expression
fvtp1  |-  ( ( A  =/=  B  /\  A  =/=  C )  -> 
( { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } `  A
)  =  D )

Proof of Theorem fvtp1
StepHypRef Expression
1 fvtp1.1 . 2  |-  A  e. 
_V
2 fvtp1.4 . 2  |-  D  e. 
_V
3 fvtp1g 5794 . 2  |-  ( ( ( A  e.  _V  /\  D  e.  _V )  /\  ( A  =/=  B  /\  A  =/=  C
) )  ->  ( { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } `  A )  =  D )
41, 2, 3mpanl12 436 1  |-  ( ( A  =/=  B  /\  A  =/=  C )  -> 
( { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } `  A
)  =  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176    =/= wne 2376   _Vcvv 2772   {ctp 3635   <.cop 3636   ` cfv 5272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-tp 3641  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-res 4688  df-iota 5233  df-fun 5274  df-fv 5280
This theorem is referenced by:  fvtp2  5798
  Copyright terms: Public domain W3C validator