ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvtp1g Unicode version

Theorem fvtp1g 5745
Description: The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
Assertion
Ref Expression
fvtp1g  |-  ( ( ( A  e.  V  /\  D  e.  W
)  /\  ( A  =/=  B  /\  A  =/= 
C ) )  -> 
( { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } `  A
)  =  D )

Proof of Theorem fvtp1g
StepHypRef Expression
1 df-tp 3615 . . 3  |-  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  =  ( { <. A ,  D >. ,  <. B ,  E >. }  u.  { <. C ,  F >. } )
21fveq1i 5535 . 2  |-  ( {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. } `
 A )  =  ( ( { <. A ,  D >. ,  <. B ,  E >. }  u.  {
<. C ,  F >. } ) `  A )
3 necom 2444 . . . . 5  |-  ( A  =/=  C  <->  C  =/=  A )
4 fvunsng 5731 . . . . 5  |-  ( ( A  e.  V  /\  C  =/=  A )  -> 
( ( { <. A ,  D >. ,  <. B ,  E >. }  u.  {
<. C ,  F >. } ) `  A )  =  ( { <. A ,  D >. ,  <. B ,  E >. } `  A ) )
53, 4sylan2b 287 . . . 4  |-  ( ( A  e.  V  /\  A  =/=  C )  -> 
( ( { <. A ,  D >. ,  <. B ,  E >. }  u.  {
<. C ,  F >. } ) `  A )  =  ( { <. A ,  D >. ,  <. B ,  E >. } `  A ) )
65ad2ant2rl 511 . . 3  |-  ( ( ( A  e.  V  /\  D  e.  W
)  /\  ( A  =/=  B  /\  A  =/= 
C ) )  -> 
( ( { <. A ,  D >. ,  <. B ,  E >. }  u.  {
<. C ,  F >. } ) `  A )  =  ( { <. A ,  D >. ,  <. B ,  E >. } `  A ) )
7 fvpr1g 5743 . . . . 5  |-  ( ( A  e.  V  /\  D  e.  W  /\  A  =/=  B )  -> 
( { <. A ,  D >. ,  <. B ,  E >. } `  A
)  =  D )
873expa 1205 . . . 4  |-  ( ( ( A  e.  V  /\  D  e.  W
)  /\  A  =/=  B )  ->  ( { <. A ,  D >. , 
<. B ,  E >. } `
 A )  =  D )
98adantrr 479 . . 3  |-  ( ( ( A  e.  V  /\  D  e.  W
)  /\  ( A  =/=  B  /\  A  =/= 
C ) )  -> 
( { <. A ,  D >. ,  <. B ,  E >. } `  A
)  =  D )
106, 9eqtrd 2222 . 2  |-  ( ( ( A  e.  V  /\  D  e.  W
)  /\  ( A  =/=  B  /\  A  =/= 
C ) )  -> 
( ( { <. A ,  D >. ,  <. B ,  E >. }  u.  {
<. C ,  F >. } ) `  A )  =  D )
112, 10eqtrid 2234 1  |-  ( ( ( A  e.  V  /\  D  e.  W
)  /\  ( A  =/=  B  /\  A  =/= 
C ) )  -> 
( { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } `  A
)  =  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160    =/= wne 2360    u. cun 3142   {csn 3607   {cpr 3608   {ctp 3609   <.cop 3610   ` cfv 5235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-tp 3615  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-res 4656  df-iota 5196  df-fun 5237  df-fv 5243
This theorem is referenced by:  fvtp2g  5746  fvtp1  5748  imasbas  12784
  Copyright terms: Public domain W3C validator