| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvtp1 | GIF version | ||
| Description: The first value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) |
| Ref | Expression |
|---|---|
| fvtp1.1 | ⊢ 𝐴 ∈ V |
| fvtp1.4 | ⊢ 𝐷 ∈ V |
| Ref | Expression |
|---|---|
| fvtp1 | ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐴) = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvtp1.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | fvtp1.4 | . 2 ⊢ 𝐷 ∈ V | |
| 3 | fvtp1g 5815 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐷 ∈ V) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶)) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐴) = 𝐷) | |
| 4 | 1, 2, 3 | mpanl12 436 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐴) = 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 ≠ wne 2378 Vcvv 2776 {ctp 3645 〈cop 3646 ‘cfv 5290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-tp 3651 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-res 4705 df-iota 5251 df-fun 5292 df-fv 5298 |
| This theorem is referenced by: fvtp2 5819 |
| Copyright terms: Public domain | W3C validator |