HomeHome Intuitionistic Logic Explorer
Theorem List (p. 133 of 135)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13201-13300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembdtru 13201 The truth value T. is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED T.
 
Theorembdfal 13202 The truth value F. is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED F.
 
Theorembdnth 13203 A falsity is a bounded formula. (Contributed by BJ, 6-Oct-2019.)
 |-  -.  ph   =>    |- BOUNDED  ph
 
TheorembdnthALT 13204 Alternate proof of bdnth 13203 not using bdfal 13202. Then, bdfal 13202 can be proved from this theorem, using fal 1339. The total number of proof steps would be 17 (for bdnthALT 13204) + 3 = 20, which is more than 8 (for bdfal 13202) + 9 (for bdnth 13203) = 17. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  -.  ph   =>    |- BOUNDED  ph
 
Theorembdxor 13205 The exclusive disjunction of two bounded formulas is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  ph   &    |- BOUNDED  ps   =>    |- BOUNDED  ( ph  \/_  ps )
 
Theorembj-bdcel 13206* Boundedness of a membership formula. (Contributed by BJ, 8-Dec-2019.)
 |- BOUNDED  y  =  A   =>    |- BOUNDED  A  e.  x
 
Theorembdab 13207 Membership in a class defined by class abstraction using a bounded formula, is a bounded formula. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  ph   =>    |- BOUNDED  x  e.  { y  |  ph }
 
Theorembdcdeq 13208 Conditional equality of a bounded formula is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  ph   =>    |- BOUNDED CondEq ( x  =  y  ->  ph )
 
11.2.7.2  Bounded classes

In line with our definitions of classes as extensions of predicates, it is useful to define a predicate for bounded classes, which is done in df-bdc 13210. Note that this notion is only a technical device which can be used to shorten proofs of (semantic) boundedness of formulas.

As will be clear by the end of this subsection (see for instance bdop 13244), one can prove the boundedness of any concrete term using only setvars and bounded formulas, for instance,  |- BOUNDED  ph =>  |- BOUNDED 
<. { x  |  ph } ,  ( {
y ,  suc  z }  X.  <. t ,  (/) >.
) >.. The proofs are long since one has to prove boundedness at each step of the construction, without being able to prove general theorems like  |- BOUNDED  A =>  |- BOUNDED  { A }.

 
Syntaxwbdc 13209 Syntax for the predicate BOUNDED.
 wff BOUNDED  A
 
Definitiondf-bdc 13210* Define a bounded class as one such that membership in this class is a bounded formula. (Contributed by BJ, 3-Oct-2019.)
 |-  (BOUNDED  A  <->  A. xBOUNDED  x  e.  A )
 
Theorembdceq 13211 Equality property for the predicate BOUNDED. (Contributed by BJ, 3-Oct-2019.)
 |-  A  =  B   =>    |-  (BOUNDED  A 
 <-> BOUNDED  B )
 
Theorembdceqi 13212 A class equal to a bounded one is bounded. Note the use of ax-ext 2122. See also bdceqir 13213. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  A   &    |-  A  =  B   =>    |- BOUNDED  B
 
Theorembdceqir 13213 A class equal to a bounded one is bounded. Stated with a commuted (compared with bdceqi 13212) equality in the hypothesis, to work better with definitions ( B is the definiendum that one wants to prove bounded; see comment of bd0r 13194). (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  A   &    |-  B  =  A   =>    |- BOUNDED  B
 
Theorembdel 13214* The belonging of a setvar in a bounded class is a bounded formula. (Contributed by BJ, 3-Oct-2019.)
 |-  (BOUNDED  A  -> BOUNDED  x  e.  A )
 
Theorembdeli 13215* Inference associated with bdel 13214. Its converse is bdelir 13216. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  A   =>    |- BOUNDED  x  e.  A
 
Theorembdelir 13216* Inference associated with df-bdc 13210. Its converse is bdeli 13215. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  x  e.  A   =>    |- BOUNDED  A
 
Theorembdcv 13217 A setvar is a bounded class. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  x
 
Theorembdcab 13218 A class defined by class abstraction using a bounded formula is bounded. (Contributed by BJ, 6-Oct-2019.)
 |- BOUNDED  ph   =>    |- BOUNDED  { x  |  ph }
 
Theorembdph 13219 A formula which defines (by class abstraction) a bounded class is bounded. (Contributed by BJ, 6-Oct-2019.)
 |- BOUNDED  { x  |  ph }   =>    |- BOUNDED  ph
 
Theorembds 13220* Boundedness of a formula resulting from implicit substitution in a bounded formula. Note that the proof does not use ax-bdsb 13191; therefore, using implicit instead of explicit substitution when boundedness is important, one might avoid using ax-bdsb 13191. (Contributed by BJ, 19-Nov-2019.)
 |- BOUNDED  ph   &    |-  ( x  =  y  ->  ( ph  <->  ps ) )   =>    |- BOUNDED  ps
 
Theorembdcrab 13221* A class defined by restricted abstraction from a bounded class and a bounded formula is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  A   &    |- BOUNDED  ph   =>    |- BOUNDED  { x  e.  A  |  ph }
 
Theorembdne 13222 Inequality of two setvars is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  x  =/=  y
 
Theorembdnel 13223* Non-membership of a setvar in a bounded formula is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  A   =>    |- BOUNDED  x  e/  A
 
Theorembdreu 13224* Boundedness of existential uniqueness.

Remark regarding restricted quantifiers: the formula  A. x  e.  A ph need not be bounded even if 
A and  ph are. Indeed,  _V is bounded by bdcvv 13226, and  |-  ( A. x  e. 
_V ph  <->  A. x ph ) (in minimal propositional calculus), so by bd0 13193, if  A. x  e. 
_V ph were bounded when  ph is bounded, then  A. x ph would be bounded as well when  ph is bounded, which is not the case. The same remark holds with  E. ,  E! ,  E*. (Contributed by BJ, 16-Oct-2019.)

 |- BOUNDED  ph   =>    |- BOUNDED  E! x  e.  y  ph
 
Theorembdrmo 13225* Boundedness of existential at-most-one. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  ph   =>    |- BOUNDED  E* x  e.  y  ph
 
Theorembdcvv 13226 The universal class is bounded. The formulation may sound strange, but recall that here, "bounded" means "Δ0". (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  _V
 
Theorembdsbc 13227 A formula resulting from proper substitution of a setvar for a setvar in a bounded formula is bounded. See also bdsbcALT 13228. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  ph   =>    |- BOUNDED  [. y  /  x ]. ph
 
TheorembdsbcALT 13228 Alternate proof of bdsbc 13227. (Contributed by BJ, 16-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |- BOUNDED  ph   =>    |- BOUNDED  [. y  /  x ]. ph
 
Theorembdccsb 13229 A class resulting from proper substitution of a setvar for a setvar in a bounded class is bounded. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  A   =>    |- BOUNDED  [_ y  /  x ]_ A
 
Theorembdcdif 13230 The difference of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  A   &    |- BOUNDED  B   =>    |- BOUNDED  ( A 
 \  B )
 
Theorembdcun 13231 The union of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  A   &    |- BOUNDED  B   =>    |- BOUNDED  ( A  u.  B )
 
Theorembdcin 13232 The intersection of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  A   &    |- BOUNDED  B   =>    |- BOUNDED  ( A  i^i  B )
 
Theorembdss 13233 The inclusion of a setvar in a bounded class is a bounded formula. Note: apparently, we cannot prove from the present axioms that equality of two bounded classes is a bounded formula. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  A   =>    |- BOUNDED  x  C_  A
 
Theorembdcnul 13234 The empty class is bounded. See also bdcnulALT 13235. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  (/)
 
TheorembdcnulALT 13235 Alternate proof of bdcnul 13234. Similarly, for the next few theorems proving boundedness of a class, one can either use their definition followed by bdceqir 13213, or use the corresponding characterizations of its elements followed by bdelir 13216. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |- BOUNDED  (/)
 
Theorembdeq0 13236 Boundedness of the formula expressing that a setvar is equal to the empty class. (Contributed by BJ, 21-Nov-2019.)
 |- BOUNDED  x  =  (/)
 
Theorembj-bd0el 13237 Boundedness of the formula "the empty set belongs to the setvar  x". (Contributed by BJ, 30-Nov-2019.)
 |- BOUNDED  (/)  e.  x
 
Theorembdcpw 13238 The power class of a bounded class is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  A   =>    |- BOUNDED  ~P A
 
Theorembdcsn 13239 The singleton of a setvar is bounded. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  { x }
 
Theorembdcpr 13240 The pair of two setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  { x ,  y }
 
Theorembdctp 13241 The unordered triple of three setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  { x ,  y ,  z }
 
Theorembdsnss 13242* Inclusion of a singleton of a setvar in a bounded class is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  A   =>    |- BOUNDED  { x }  C_  A
 
Theorembdvsn 13243* Equality of a setvar with a singleton of a setvar is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  x  =  { y }
 
Theorembdop 13244 The ordered pair of two setvars is a bounded class. (Contributed by BJ, 21-Nov-2019.)
 |- BOUNDED 
 <. x ,  y >.
 
Theorembdcuni 13245 The union of a setvar is a bounded class. (Contributed by BJ, 15-Oct-2019.)
 |- BOUNDED 
 U. x
 
Theorembdcint 13246 The intersection of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED 
 |^| x
 
Theorembdciun 13247* The indexed union of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  A   =>    |- BOUNDED  U_ x  e.  y  A
 
Theorembdciin 13248* The indexed intersection of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  A   =>    |- BOUNDED  |^|_ x  e.  y  A
 
Theorembdcsuc 13249 The successor of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED 
 suc  x
 
Theorembdeqsuc 13250* Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.)
 |- BOUNDED  x  =  suc  y
 
Theorembj-bdsucel 13251 Boundedness of the formula "the successor of the setvar  x belongs to the setvar  y". (Contributed by BJ, 30-Nov-2019.)
 |- BOUNDED  suc  x  e.  y
 
Theorembdcriota 13252* A class given by a restricted definition binder is bounded, under the given hypotheses. (Contributed by BJ, 24-Nov-2019.)
 |- BOUNDED  ph   &    |-  E! x  e.  y  ph   =>    |- BOUNDED  ( iota_ x  e.  y  ph )
 
11.2.8  CZF: Bounded separation

In this section, we state the axiom scheme of bounded separation, which is part of CZF set theory.

 
Axiomax-bdsep 13253* Axiom scheme of bounded (or restricted, or Δ0) separation. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. For the full axiom of separation, see ax-sep 4054. (Contributed by BJ, 5-Oct-2019.)
 |- BOUNDED  ph   =>    |- 
 A. a E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph )
 )
 
Theorembdsep1 13254* Version of ax-bdsep 13253 without initial universal quantifier. (Contributed by BJ, 5-Oct-2019.)
 |- BOUNDED  ph   =>    |- 
 E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph ) )
 
Theorembdsep2 13255* Version of ax-bdsep 13253 with one disjoint variable condition removed and without initial universal quantifier. Use bdsep1 13254 when sufficient. (Contributed by BJ, 5-Oct-2019.)
 |- BOUNDED  ph   =>    |- 
 E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph ) )
 
Theorembdsepnft 13256* Closed form of bdsepnf 13257. Version of ax-bdsep 13253 with one disjoint variable condition removed, the other disjoint variable condition replaced by a non-freeness antecedent, and without initial universal quantifier. Use bdsep1 13254 when sufficient. (Contributed by BJ, 19-Oct-2019.)
 |- BOUNDED  ph   =>    |-  ( A. x F/ b ph  ->  E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph )
 ) )
 
Theorembdsepnf 13257* Version of ax-bdsep 13253 with one disjoint variable condition removed, the other disjoint variable condition replaced by a non-freeness hypothesis, and without initial universal quantifier. See also bdsepnfALT 13258. Use bdsep1 13254 when sufficient. (Contributed by BJ, 5-Oct-2019.)
 |-  F/ b ph   &    |- BOUNDED  ph   =>    |- 
 E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph ) )
 
TheorembdsepnfALT 13258* Alternate proof of bdsepnf 13257, not using bdsepnft 13256. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  F/ b ph   &    |- BOUNDED  ph   =>    |- 
 E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph ) )
 
Theorembdzfauscl 13259* Closed form of the version of zfauscl 4056 for bounded formulas using bounded separation. (Contributed by BJ, 13-Nov-2019.)
 |- BOUNDED  ph   =>    |-  ( A  e.  V  ->  E. y A. x ( x  e.  y  <->  ( x  e.  A  /\  ph ) ) )
 
Theorembdbm1.3ii 13260* Bounded version of bm1.3ii 4057. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
 |- BOUNDED  ph   &    |-  E. x A. y ( ph  ->  y  e.  x )   =>    |-  E. x A. y ( y  e.  x  <->  ph )
 
Theorembj-axemptylem 13261* Lemma for bj-axempty 13262 and bj-axempty2 13263. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4062 instead. (New usage is discouraged.)
 |-  E. x A. y ( y  e.  x  -> F.  )
 
Theorembj-axempty 13262* Axiom of the empty set from bounded separation. It is provable from bounded separation since the intuitionistic FOL used in iset.mm assumes a nonempty universe. See axnul 4061. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4062 instead. (New usage is discouraged.)
 |-  E. x A. y  e.  x F.
 
Theorembj-axempty2 13263* Axiom of the empty set from bounded separation, alternate version to bj-axempty 13262. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4062 instead. (New usage is discouraged.)
 |-  E. x A. y  -.  y  e.  x
 
Theorembj-nalset 13264* nalset 4066 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  -.  E. x A. y  y  e.  x
 
Theorembj-vprc 13265 vprc 4068 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  -.  _V  e.  _V
 
Theorembj-nvel 13266 nvel 4069 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  -.  _V  e.  A
 
Theorembj-vnex 13267 vnex 4067 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  -.  E. x  x  =  _V
 
Theorembdinex1 13268 Bounded version of inex1 4070. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  B   &    |-  A  e.  _V   =>    |-  ( A  i^i  B )  e. 
 _V
 
Theorembdinex2 13269 Bounded version of inex2 4071. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  B   &    |-  A  e.  _V   =>    |-  ( B  i^i  A )  e. 
 _V
 
Theorembdinex1g 13270 Bounded version of inex1g 4072. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  B   =>    |-  ( A  e.  V  ->  ( A  i^i  B )  e.  _V )
 
Theorembdssex 13271 Bounded version of ssex 4073. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   &    |-  B  e.  _V   =>    |-  ( A  C_  B  ->  A  e.  _V )
 
Theorembdssexi 13272 Bounded version of ssexi 4074. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   &    |-  B  e.  _V   &    |-  A  C_  B   =>    |-  A  e.  _V
 
Theorembdssexg 13273 Bounded version of ssexg 4075. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   =>    |-  ( ( A  C_  B  /\  B  e.  C )  ->  A  e.  _V )
 
Theorembdssexd 13274 Bounded version of ssexd 4076. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  ( ph  ->  B  e.  C )   &    |-  ( ph  ->  A  C_  B )   &    |- BOUNDED  A   =>    |-  ( ph  ->  A  e.  _V )
 
Theorembdrabexg 13275* Bounded version of rabexg 4079. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  ph   &    |- BOUNDED  A   =>    |-  ( A  e.  V  ->  { x  e.  A  |  ph }  e.  _V )
 
Theorembj-inex 13276 The intersection of two sets is a set, from bounded separation. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
 |-  (
 ( A  e.  V  /\  B  e.  W ) 
 ->  ( A  i^i  B )  e.  _V )
 
Theorembj-intexr 13277 intexr 4083 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  ( |^| A  e.  _V  ->  A  =/=  (/) )
 
Theorembj-intnexr 13278 intnexr 4084 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  ( |^| A  =  _V  ->  -. 
 |^| A  e.  _V )
 
Theorembj-zfpair2 13279 Proof of zfpair2 4140 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
 |-  { x ,  y }  e.  _V
 
Theorembj-prexg 13280 Proof of prexg 4141 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
 |-  (
 ( A  e.  V  /\  B  e.  W ) 
 ->  { A ,  B }  e.  _V )
 
Theorembj-snexg 13281 snexg 4116 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  { A }  e.  _V )
 
Theorembj-snex 13282 snex 4117 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
 |-  A  e.  _V   =>    |- 
 { A }  e.  _V
 
Theorembj-sels 13283* If a class is a set, then it is a member of a set. (Copied from set.mm.) (Contributed by BJ, 3-Apr-2019.)
 |-  ( A  e.  V  ->  E. x  A  e.  x )
 
Theorembj-axun2 13284* axun2 4365 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.)
 |-  E. y A. z ( z  e.  y  <->  E. w ( z  e.  w  /\  w  e.  x ) )
 
Theorembj-uniex2 13285* uniex2 4366 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.)
 |-  E. y  y  =  U. x
 
Theorembj-uniex 13286 uniex 4367 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  A  e.  _V   =>    |- 
 U. A  e.  _V
 
Theorembj-uniexg 13287 uniexg 4369 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  U. A  e.  _V )
 
Theorembj-unex 13288 unex 4370 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  u.  B )  e. 
 _V
 
Theorembdunexb 13289 Bounded version of unexb 4371. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   &    |- BOUNDED  B   =>    |-  ( ( A  e.  _V 
 /\  B  e.  _V ) 
 <->  ( A  u.  B )  e.  _V )
 
Theorembj-unexg 13290 unexg 4372 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  (
 ( A  e.  V  /\  B  e.  W ) 
 ->  ( A  u.  B )  e.  _V )
 
Theorembj-sucexg 13291 sucexg 4422 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  suc 
 A  e.  _V )
 
Theorembj-sucex 13292 sucex 4423 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  A  e.  _V   =>    |- 
 suc  A  e.  _V
 
11.2.8.1  Delta_0-classical logic
 
Axiomax-bj-d0cl 13293 Axiom for Δ0-classical logic. (Contributed by BJ, 2-Jan-2020.)
 |- BOUNDED  ph   =>    |- DECID  ph
 
Theorembj-d0clsepcl 13294 Δ0-classical logic and separation implies classical logic. (Contributed by BJ, 2-Jan-2020.) (Proof modification is discouraged.)
 |- DECID  ph
 
11.2.8.2  Inductive classes and the class of natural numbers (finite ordinals)
 
Syntaxwind 13295 Syntax for inductive classes.
 wff Ind  A
 
Definitiondf-bj-ind 13296* Define the property of being an inductive class. (Contributed by BJ, 30-Nov-2019.)
 |-  (Ind  A 
 <->  ( (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A ) )
 
Theorembj-indsuc 13297 A direct consequence of the definition of Ind. (Contributed by BJ, 30-Nov-2019.)
 |-  (Ind  A  ->  ( B  e.  A  ->  suc  B  e.  A ) )
 
Theorembj-indeq 13298 Equality property for Ind. (Contributed by BJ, 30-Nov-2019.)
 |-  ( A  =  B  ->  (Ind 
 A 
 <-> Ind 
 B ) )
 
Theorembj-bdind 13299 Boundedness of the formula "the setvar  x is an inductive class". (Contributed by BJ, 30-Nov-2019.)
 |- BOUNDED Ind  x
 
Theorembj-indint 13300* The property of being an inductive class is closed under intersections. (Contributed by BJ, 30-Nov-2019.)
 |- Ind  |^| { x  e.  A  | Ind  x }
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13441
  Copyright terms: Public domain < Previous  Next >