HomeHome Intuitionistic Logic Explorer
Theorem List (p. 133 of 158)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13201-13300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremgrpinv11 13201 The group inverse is one-to-one. (Contributed by NM, 22-Mar-2015.)
 |-  B  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  (
 ( N `  X )  =  ( N `  Y )  <->  X  =  Y ) )
 
Theoremgrpinvf1o 13202 The group inverse is a one-to-one onto function. (Contributed by NM, 22-Oct-2014.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
 |-  B  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   &    |-  ( ph  ->  G  e.  Grp )   =>    |-  ( ph  ->  N : B -1-1-onto-> B )
 
Theoremgrpinvnz 13203 The inverse of a nonzero group element is not zero. (Contributed by Stefan O'Rear, 27-Feb-2015.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `
  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  X  =/=  .0.  )  ->  ( N `  X )  =/=  .0.  )
 
Theoremgrpinvnzcl 13204 The inverse of a nonzero group element is a nonzero group element. (Contributed by Stefan O'Rear, 27-Feb-2015.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  N  =  ( invg `
  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  ( B  \  {  .0.  } ) )  ->  ( N `  X )  e.  ( B  \  {  .0.  } ) )
 
Theoremgrpsubinv 13205 Subtraction of an inverse. (Contributed by NM, 7-Apr-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  N  =  ( invg `
  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X  .-  ( N `  Y ) )  =  ( X  .+  Y ) )
 
Theoremgrplmulf1o 13206* Left multiplication by a group element is a bijection on any group. (Contributed by Mario Carneiro, 17-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  F  =  ( x  e.  B  |->  ( X  .+  x ) )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  F : B -1-1-onto-> B )
 
Theoremgrpinvpropdg 13207* If two structures have the same group components (properties), they have the same group inversion function. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Stefan O'Rear, 21-Mar-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ph  ->  K  e.  V )   &    |-  ( ph  ->  L  e.  W )   &    |-  (
 ( ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  ( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )   =>    |-  ( ph  ->  ( invg `  K )  =  ( invg `  L ) )
 
Theoremgrpidssd 13208* If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then both groups have the same identity element. (Contributed by AV, 15-Mar-2019.)
 |-  ( ph  ->  M  e.  Grp )   &    |-  ( ph  ->  S  e.  Grp )   &    |-  B  =  ( Base `  S )   &    |-  ( ph  ->  B  C_  ( Base `  M ) )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  B  ( x (
 +g  `  M )
 y )  =  ( x ( +g  `  S ) y ) )   =>    |-  ( ph  ->  ( 0g `  M )  =  ( 0g `  S ) )
 
Theoremgrpinvssd 13209* If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the elements of the first group have the same inverses in both groups. (Contributed by AV, 15-Mar-2019.)
 |-  ( ph  ->  M  e.  Grp )   &    |-  ( ph  ->  S  e.  Grp )   &    |-  B  =  ( Base `  S )   &    |-  ( ph  ->  B  C_  ( Base `  M ) )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  B  ( x (
 +g  `  M )
 y )  =  ( x ( +g  `  S ) y ) )   =>    |-  ( ph  ->  ( X  e.  B  ->  ( ( invg `  S ) `
  X )  =  ( ( invg `  M ) `  X ) ) )
 
Theoremgrpinvadd 13210 The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X  .+  Y ) )  =  ( ( N `
  Y )  .+  ( N `  X ) ) )
 
Theoremgrpsubf 13211 Functionality of group subtraction. (Contributed by Mario Carneiro, 9-Sep-2014.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( G  e.  Grp 
 ->  .-  : ( B  X.  B ) --> B )
 
Theoremgrpsubcl 13212 Closure of group subtraction. (Contributed by NM, 31-Mar-2014.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y )  e.  B )
 
Theoremgrpsubrcan 13213 Right cancellation law for group subtraction. (Contributed by NM, 31-Mar-2014.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( ( X  .-  Z )  =  ( Y  .-  Z )  <->  X  =  Y ) )
 
Theoremgrpinvsub 13214 Inverse of a group subtraction. (Contributed by NM, 9-Sep-2014.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X  .-  Y ) )  =  ( Y  .-  X ) )
 
Theoremgrpinvval2 13215 A df-neg 8200-like equation for inverse in terms of group subtraction. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  N  =  ( invg `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( N `  X )  =  (  .0.  .-  X ) )
 
Theoremgrpsubid 13216 Subtraction of a group element from itself. (Contributed by NM, 31-Mar-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( X  .-  X )  =  .0.  )
 
Theoremgrpsubid1 13217 Subtraction of the identity from a group element. (Contributed by Mario Carneiro, 14-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( X  .-  .0.  )  =  X )
 
Theoremgrpsubeq0 13218 If the difference between two group elements is zero, they are equal. (subeq0 8252 analog.) (Contributed by NM, 31-Mar-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .-  Y )  =  .0.  <->  X  =  Y ) )
 
Theoremgrpsubadd0sub 13219 Subtraction expressed as addition of the difference of the identity element and the subtrahend. (Contributed by AV, 9-Nov-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .-  =  ( -g `  G )   &    |- 
 .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y )  =  ( X  .+  (  .0.  .-  Y ) ) )
 
Theoremgrpsubadd 13220 Relationship between group subtraction and addition. (Contributed by NM, 31-Mar-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .-  Y )  =  Z  <->  ( Z  .+  Y )  =  X ) )
 
Theoremgrpsubsub 13221 Double group subtraction. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( X  .-  ( Y  .-  Z ) )  =  ( X  .+  ( Z  .-  Y ) ) )
 
Theoremgrpaddsubass 13222 Associative-type law for group subtraction and addition. (Contributed by NM, 16-Apr-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .+  Y )  .-  Z )  =  ( X  .+  ( Y  .-  Z ) ) )
 
Theoremgrppncan 13223 Cancellation law for subtraction (pncan 8232 analog). (Contributed by NM, 16-Apr-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  Y )  .-  Y )  =  X )
 
Theoremgrpnpcan 13224 Cancellation law for subtraction (npcan 8235 analog). (Contributed by NM, 19-Apr-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .-  Y )  .+  Y )  =  X )
 
Theoremgrpsubsub4 13225 Double group subtraction (subsub4 8259 analog). (Contributed by Mario Carneiro, 2-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .-  Y )  .-  Z )  =  ( X  .-  ( Z  .+  Y ) ) )
 
Theoremgrppnpcan2 13226 Cancellation law for mixed addition and subtraction. (pnpcan2 8266 analog.) (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .+  Z )  .-  ( Y  .+  Z ) )  =  ( X 
 .-  Y ) )
 
Theoremgrpnpncan 13227 Cancellation law for group subtraction. (npncan 8247 analog.) (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .-  Y )  .+  ( Y  .-  Z ) )  =  ( X 
 .-  Z ) )
 
Theoremgrpnpncan0 13228 Cancellation law for group subtraction (npncan2 8253 analog). (Contributed by AV, 24-Nov-2019.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  ( ( X  .-  Y )  .+  ( Y  .-  X ) )  =  .0.  )
 
Theoremgrpnnncan2 13229 Cancellation law for group subtraction. (nnncan2 8263 analog.) (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( ( X  .-  Z )  .-  ( Y 
 .-  Z ) )  =  ( X  .-  Y ) )
 
Theoremdfgrp3mlem 13230* Lemma for dfgrp3m 13231. (Contributed by AV, 28-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) 
 ->  E. u  e.  B  A. a  e.  B  ( ( u  .+  a
 )  =  a  /\  E. i  e.  B  ( i  .+  a )  =  u ) )
 
Theoremdfgrp3m 13231* Alternate definition of a group as semigroup (with at least one element) which is also a quasigroup, i.e. a magma in which solutions  x and  y of the equations  ( a  .+  x )  =  b and  ( x  .+  a
)  =  b exist. Theorem 3.2 of [Bruck] p. 28. (Contributed by AV, 28-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Grp  <->  ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )
 
Theoremdfgrp3me 13232* Alternate definition of a group as a set with a closed, associative operation, for which solutions  x and  y of the equations  ( a  .+  x )  =  b and  ( x  .+  a
)  =  b exist. Exercise 1 of [Herstein] p. 57. (Contributed by NM, 5-Dec-2006.) (Revised by AV, 28-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Grp  <->  ( E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( ( x 
 .+  y )  e.  B  /\  A. z  e.  B  ( ( x 
 .+  y )  .+  z )  =  ( x  .+  ( y  .+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) ) )
 
Theoremgrplactfval 13233* The left group action of element  A of group  G. (Contributed by Paul Chapman, 18-Mar-2008.)
 |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g 
 .+  a ) ) )   &    |-  X  =  (
 Base `  G )   =>    |-  ( A  e.  X  ->  ( F `  A )  =  (
 a  e.  X  |->  ( A  .+  a ) ) )
 
Theoremgrplactcnv 13234* The left group action of element  A of group  G maps the underlying set  X of  G one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
 |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g 
 .+  a ) ) )   &    |-  X  =  (
 Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  A  e.  X ) 
 ->  ( ( F `  A ) : X -1-1-onto-> X  /\  `' ( F `  A )  =  ( F `  ( I `  A ) ) ) )
 
Theoremgrplactf1o 13235* The left group action of element  A of group  G maps the underlying set  X of  G one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
 |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g 
 .+  a ) ) )   &    |-  X  =  (
 Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  (
 ( G  e.  Grp  /\  A  e.  X ) 
 ->  ( F `  A ) : X -1-1-onto-> X )
 
Theoremgrpsubpropdg 13236 Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015.)
 |-  ( ph  ->  ( Base `  G )  =  ( Base `  H )
 )   &    |-  ( ph  ->  ( +g  `  G )  =  ( +g  `  H ) )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  H  e.  W )   =>    |-  ( ph  ->  ( -g `  G )  =  ( -g `  H ) )
 
Theoremgrpsubpropd2 13237* Strong property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  B  =  ( Base `  H )
 )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  ( x ( +g  `  G ) y )  =  ( x ( +g  `  H ) y ) )   =>    |-  ( ph  ->  ( -g `  G )  =  ( -g `  H ) )
 
Theoremgrp1 13238 The (smallest) structure representing a trivial group. According to Wikipedia ("Trivial group", 28-Apr-2019, https://en.wikipedia.org/wiki/Trivial_group) "In mathematics, a trivial group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element". (Contributed by AV, 28-Apr-2019.)
 |-  M  =  { <. (
 Base `  ndx ) ,  { I } >. , 
 <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
 >. }   =>    |-  ( I  e.  V  ->  M  e.  Grp )
 
Theoremgrp1inv 13239 The inverse function of the trivial group. (Contributed by FL, 21-Jun-2010.) (Revised by AV, 26-Aug-2021.)
 |-  M  =  { <. (
 Base `  ndx ) ,  { I } >. , 
 <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
 >. }   =>    |-  ( I  e.  V  ->  ( invg `  M )  =  (  _I  |`  { I }
 ) )
 
Theoremimasgrp2 13240* The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  R )
 )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .+  b )
 )  =  ( F `
  ( p  .+  q ) ) ) )   &    |-  ( ph  ->  R  e.  W )   &    |-  (
 ( ph  /\  x  e.  V  /\  y  e.  V )  ->  ( x  .+  y )  e.  V )   &    |-  ( ( ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  ( F `
  ( ( x 
 .+  y )  .+  z ) )  =  ( F `  ( x  .+  ( y  .+  z ) ) ) )   &    |-  ( ph  ->  .0. 
 e.  V )   &    |-  (
 ( ph  /\  x  e.  V )  ->  ( F `  (  .0.  .+  x ) )  =  ( F `  x ) )   &    |-  ( ( ph  /\  x  e.  V ) 
 ->  N  e.  V )   &    |-  ( ( ph  /\  x  e.  V )  ->  ( F `  ( N  .+  x ) )  =  ( F `  .0.  ) )   =>    |-  ( ph  ->  ( U  e.  Grp  /\  ( F `  .0.  )  =  ( 0g `  U ) ) )
 
Theoremimasgrp 13241* The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  R )
 )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .+  b )
 )  =  ( F `
  ( p  .+  q ) ) ) )   &    |-  ( ph  ->  R  e.  Grp )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ph  ->  ( U  e.  Grp  /\  ( F `  .0.  )  =  ( 0g `  U ) ) )
 
Theoremimasgrpf1 13242 The image of a group under an injection is a group. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  U  =  ( F 
 "s 
 R )   &    |-  V  =  (
 Base `  R )   =>    |-  ( ( F : V -1-1-> B  /\  R  e.  Grp )  ->  U  e.  Grp )
 
Theoremqusgrp2 13243* Prove that a quotient structure is a group. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  R )
 )   &    |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  R  e.  X )   &    |-  ( ph  ->  ( ( a 
 .~  p  /\  b  .~  q )  ->  (
 a  .+  b )  .~  ( p  .+  q
 ) ) )   &    |-  (
 ( ph  /\  x  e.  V  /\  y  e.  V )  ->  ( x  .+  y )  e.  V )   &    |-  ( ( ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  ( ( x  .+  y ) 
 .+  z )  .~  ( x  .+  ( y 
 .+  z ) ) )   &    |-  ( ph  ->  .0. 
 e.  V )   &    |-  (
 ( ph  /\  x  e.  V )  ->  (  .0.  .+  x )  .~  x )   &    |-  ( ( ph  /\  x  e.  V ) 
 ->  N  e.  V )   &    |-  ( ( ph  /\  x  e.  V )  ->  ( N  .+  x )  .~  .0.  )   =>    |-  ( ph  ->  ( U  e.  Grp  /\  [  .0.  ]  .~  =  ( 0g `  U ) ) )
 
Theoremmhmlem 13244* Lemma for mhmmnd 13246 and ghmgrp 13248. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.)
 |-  ( ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) )   &    |-  ( ph  ->  A  e.  X )   &    |-  ( ph  ->  B  e.  X )   =>    |-  ( ph  ->  ( F `  ( A  .+  B ) )  =  ( ( F `  A )  .+^  ( F `
  B ) ) )
 
Theoremmhmid 13245* A surjective monoid morphism preserves identity element. (Contributed by Thierry Arnoux, 25-Jan-2020.)
 |-  ( ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) )   &    |-  X  =  (
 Base `  G )   &    |-  Y  =  ( Base `  H )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  (
 +g  `  H )   &    |-  ( ph  ->  F : X -onto-> Y )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ph  ->  ( F `  .0.  )  =  ( 0g `  H ) )
 
Theoremmhmmnd 13246* The image of a monoid  G under a monoid homomorphism  F is a monoid. (Contributed by Thierry Arnoux, 25-Jan-2020.)
 |-  ( ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) )   &    |-  X  =  (
 Base `  G )   &    |-  Y  =  ( Base `  H )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  (
 +g  `  H )   &    |-  ( ph  ->  F : X -onto-> Y )   &    |-  ( ph  ->  G  e.  Mnd )   =>    |-  ( ph  ->  H  e.  Mnd )
 
Theoremmhmfmhm 13247* The function fulfilling the conditions of mhmmnd 13246 is a monoid homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.)
 |-  ( ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) )   &    |-  X  =  (
 Base `  G )   &    |-  Y  =  ( Base `  H )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  (
 +g  `  H )   &    |-  ( ph  ->  F : X -onto-> Y )   &    |-  ( ph  ->  G  e.  Mnd )   =>    |-  ( ph  ->  F  e.  ( G MndHom  H ) )
 
Theoremghmgrp 13248* The image of a group  G under a group homomorphism  F is a group. This is a stronger result than that usually found in the literature, since the target of the homomorphism (operator  O in our model) need not have any of the properties of a group as a prerequisite. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.)
 |-  ( ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) )   &    |-  X  =  (
 Base `  G )   &    |-  Y  =  ( Base `  H )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  (
 +g  `  H )   &    |-  ( ph  ->  F : X -onto-> Y )   &    |-  ( ph  ->  G  e.  Grp )   =>    |-  ( ph  ->  H  e.  Grp )
 
7.2.2  Group multiple operation

The "group multiple" operation (if the group is multiplicative, also called "group power" or "group exponentiation" operation), can be defined for arbitrary magmas, if the multiplier/exponent is a nonnegative integer. See also the definition in [Lang] p. 6, where an element  x(of a monoid) to the power of a nonnegative integer 
n is defined and denoted by  x ^ n. Definition df-mulg 13250, however, defines the group multiple for arbitrary (i.e. also negative) integers. This is meaningful for groups only, and requires Definition df-minusg 13136 of the inverse operation  invg.

 
Syntaxcmg 13249 Extend class notation with a function mapping a group operation to the multiple/power operation for the magma/group.
 class .g
 
Definitiondf-mulg 13250* Define the group multiple function, also known as group exponentiation when viewed multiplicatively. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |- .g  =  ( g  e.  _V  |->  ( n  e.  ZZ ,  x  e.  ( Base `  g )  |->  if ( n  =  0 ,  ( 0g `  g ) ,  [_  seq 1 ( ( +g  `  g ) ,  ( NN  X.  { x }
 ) )  /  s ]_ if ( 0  < 
 n ,  ( s `
  n ) ,  ( ( invg `  g ) `  (
 s `  -u n ) ) ) ) ) )
 
Theoremmulgfvalg 13251* Group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  I  =  ( invg `  G )   &    |-  .x. 
 =  (.g `  G )   =>    |-  ( G  e.  V  ->  .x.  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
 (  .+  ,  ( NN  X.  { x }
 ) ) `  n ) ,  ( I `  (  seq 1
 (  .+  ,  ( NN  X.  { x }
 ) ) `  -u n ) ) ) ) ) )
 
Theoremmulgval 13252 Value of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  I  =  ( invg `  G )   &    |-  .x. 
 =  (.g `  G )   &    |-  S  =  seq 1 (  .+  ,  ( NN  X.  { X } ) )   =>    |-  ( ( N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X )  =  if ( N  =  0 ,  .0.  ,  if ( 0  <  N ,  ( S `  N ) ,  ( I `  ( S `  -u N ) ) ) ) )
 
Theoremmulgex 13253 Existence of the group multiple operation. (Contributed by Jim Kingdon, 22-Apr-2025.)
 |-  ( G  e.  V  ->  (.g `  G )  e. 
 _V )
 
Theoremmulgfng 13254 Functionality of the group multiple operation. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( G  e.  V  ->  .x.  Fn  ( ZZ 
 X.  B ) )
 
Theoremmulg0 13255 Group multiple (exponentiation) operation at zero. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .x. 
 =  (.g `  G )   =>    |-  ( X  e.  B  ->  ( 0  .x.  X )  =  .0.  )
 
Theoremmulgnn 13256 Group multiple (exponentiation) operation at a positive integer. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .x.  =  (.g `  G )   &    |-  S  =  seq 1 (  .+  ,  ( NN  X.  { X }
 ) )   =>    |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X )  =  ( S `
  N ) )
 
Theoremmulgnngsum 13257* Group multiple (exponentiation) operation at a positive integer expressed by a group sum. (Contributed by AV, 28-Dec-2023.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  F  =  ( x  e.  ( 1
 ... N )  |->  X )   =>    |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X )  =  ( G 
 gsumg  F ) )
 
Theoremmulgnn0gsum 13258* Group multiple (exponentiation) operation at a nonnegative integer expressed by a group sum. This corresponds to the definition in [Lang] p. 6, second formula. (Contributed by AV, 28-Dec-2023.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  F  =  ( x  e.  ( 1
 ... N )  |->  X )   =>    |-  ( ( N  e.  NN0  /\  X  e.  B ) 
 ->  ( N  .x.  X )  =  ( G  gsumg  F ) )
 
Theoremmulg1 13259 Group multiple (exponentiation) operation at one. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( X  e.  B  ->  ( 1  .x.  X )  =  X )
 
Theoremmulgnnp1 13260 Group multiple (exponentiation) operation at a successor. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( N  e.  NN  /\  X  e.  B )  ->  (
 ( N  +  1 )  .x.  X )  =  ( ( N  .x.  X )  .+  X ) )
 
Theoremmulg2 13261 Group multiple (exponentiation) operation at two. (Contributed by Mario Carneiro, 15-Oct-2015.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( X  e.  B  ->  ( 2  .x.  X )  =  ( X 
 .+  X ) )
 
Theoremmulgnegnn 13262 Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( I `  ( N 
 .x.  X ) ) )
 
Theoremmulgnn0p1 13263 Group multiple (exponentiation) operation at a successor, extended to  NN0. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B ) 
 ->  ( ( N  +  1 )  .x.  X )  =  ( ( N 
 .x.  X )  .+  X ) )
 
Theoremmulgnnsubcl 13264* Closure of the group multiple (exponentiation) operation in a subsemigroup. (Contributed by Mario Carneiro, 10-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  S  C_  B )   &    |-  ( ( ph  /\  x  e.  S  /\  y  e.  S )  ->  ( x  .+  y
 )  e.  S )   =>    |-  ( ( ph  /\  N  e.  NN  /\  X  e.  S )  ->  ( N 
 .x.  X )  e.  S )
 
Theoremmulgnn0subcl 13265* Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  S  C_  B )   &    |-  ( ( ph  /\  x  e.  S  /\  y  e.  S )  ->  ( x  .+  y
 )  e.  S )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  .0. 
 e.  S )   =>    |-  ( ( ph  /\  N  e.  NN0  /\  X  e.  S )  ->  ( N  .x.  X )  e.  S )
 
Theoremmulgsubcl 13266* Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 10-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  S  C_  B )   &    |-  ( ( ph  /\  x  e.  S  /\  y  e.  S )  ->  ( x  .+  y
 )  e.  S )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  .0. 
 e.  S )   &    |-  I  =  ( invg `  G )   &    |-  ( ( ph  /\  x  e.  S ) 
 ->  ( I `  x )  e.  S )   =>    |-  (
 ( ph  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  .x.  X )  e.  S )
 
Theoremmulgnncl 13267 Closure of the group multiple (exponentiation) operation for a positive multiplier in a magma. (Contributed by Mario Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e. Mgm  /\  N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
 
Theoremmulgnn0cl 13268 Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
 
Theoremmulgcl 13269 Closure of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
 
Theoremmulgneg 13270 Group multiple (exponentiation) operation at a negative integer. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( I `  ( N  .x.  X ) ) )
 
Theoremmulgnegneg 13271 The inverse of a negative group multiple is the positive group multiple. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( I `  ( -u N  .x.  X )
 )  =  ( N 
 .x.  X ) )
 
Theoremmulgm1 13272 Group multiple (exponentiation) operation at negative one. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 20-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( -u 1  .x.  X )  =  ( I `  X ) )
 
Theoremmulgnn0cld 13273 Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. Deduction associated with mulgnn0cl 13268. (Contributed by SN, 1-Feb-2025.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( N  .x.  X )  e.  B )
 
Theoremmulgcld 13274 Deduction associated with mulgcl 13269. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( N  .x.  X )  e.  B )
 
Theoremmulgaddcomlem 13275 Lemma for mulgaddcom 13276. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  (
 ( y  .x.  X )  .+  X )  =  ( X  .+  (
 y  .x.  X )
 ) )  ->  (
 ( -u y  .x.  X )  .+  X )  =  ( X  .+  ( -u y  .x.  X )
 ) )
 
Theoremmulgaddcom 13276 The group multiple operator commutes with the group operation. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( ( N 
 .x.  X )  .+  X )  =  ( X  .+  ( N  .x.  X ) ) )
 
Theoremmulginvcom 13277 The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  ( I `  X ) )  =  ( I `  ( N  .x.  X ) ) )
 
Theoremmulginvinv 13278 The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( I `  ( N  .x.  ( I `  X ) ) )  =  ( N  .x.  X ) )
 
Theoremmulgnn0z 13279 A group multiple of the identity, for nonnegative multiple. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Mnd  /\  N  e.  NN0 )  ->  ( N  .x.  .0.  )  =  .0.  )
 
Theoremmulgz 13280 A group multiple of the identity, for integer multiple. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  ( N  .x.  .0.  )  =  .0.  )
 
Theoremmulgnndir 13281 Sum of group multiples, for positive multiples. (Contributed by Mario Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X )  .+  ( N  .x.  X ) ) )
 
Theoremmulgnn0dir 13282 Sum of group multiples, generalized to  NN0. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B ) )  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X )  .+  ( N  .x.  X ) ) )
 
Theoremmulgdirlem 13283 Lemma for mulgdir 13284. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N )  e. 
 NN0 )  ->  (
 ( M  +  N )  .x.  X )  =  ( ( M  .x.  X )  .+  ( N 
 .x.  X ) ) )
 
Theoremmulgdir 13284 Sum of group multiples, generalized to  ZZ. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B ) )  ->  ( ( M  +  N )  .x.  X )  =  ( ( M 
 .x.  X )  .+  ( N  .x.  X ) ) )
 
Theoremmulgp1 13285 Group multiple (exponentiation) operation at a successor, extended to  ZZ. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( ( N  +  1 )  .x.  X )  =  ( ( N  .x.  X )  .+  X ) )
 
Theoremmulgneg2 13286 Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( N  .x.  ( I `  X ) ) )
 
Theoremmulgnnass 13287 Product of group multiples, for positive multiples in a semigroup. (Contributed by Mario Carneiro, 13-Dec-2014.) (Revised by AV, 29-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
 )  ->  ( ( M  x.  N )  .x.  X )  =  ( M 
 .x.  ( N  .x.  X ) ) )
 
Theoremmulgnn0ass 13288 Product of group multiples, generalized to  NN0. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B ) )  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) )
 
Theoremmulgass 13289 Product of group multiples, generalized to  ZZ. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
 )  ->  ( ( M  x.  N )  .x.  X )  =  ( M 
 .x.  ( N  .x.  X ) ) )
 
Theoremmulgassr 13290 Reversed product of group multiples. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
 )  ->  ( ( N  x.  M )  .x.  X )  =  ( M 
 .x.  ( N  .x.  X ) ) )
 
Theoremmulgmodid 13291 Casting out multiples of the identity element leaves the group multiple unchanged. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .x. 
 =  (.g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M  .x.  X )  =  .0.  ) ) 
 ->  ( ( N  mod  M )  .x.  X )  =  ( N  .x.  X ) )
 
Theoremmulgsubdir 13292 Distribution of group multiples over subtraction for group elements, subdir 8412 analog. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B ) )  ->  ( ( M  -  N )  .x.  X )  =  ( ( M 
 .x.  X )  .-  ( N  .x.  X ) ) )
 
Theoremmhmmulg 13293 A homomorphism of monoids preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .X.  =  (.g `  H )   =>    |-  ( ( F  e.  ( G MndHom  H )  /\  N  e.  NN0  /\  X  e.  B )  ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X ) ) )
 
Theoremmulgpropdg 13294* Two structures with the same group-nature have the same group multiple function.  K is expected to either be  _V (when strong equality is available) or  B (when closure is available). (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  ( ph  ->  .x.  =  (.g `  G ) )   &    |-  ( ph  ->  .X.  =  (.g `  H ) )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  H  e.  W )   &    |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  B  =  ( Base `  H )
 )   &    |-  ( ph  ->  B  C_  K )   &    |-  ( ( ph  /\  ( x  e.  K  /\  y  e.  K ) )  ->  ( x ( +g  `  G ) y )  e.  K )   &    |-  ( ( ph  /\  ( x  e.  K  /\  y  e.  K ) )  ->  ( x ( +g  `  G ) y )  =  ( x ( +g  `  H ) y ) )   =>    |-  ( ph  ->  .x.  =  .X.  )
 
Theoremsubmmulgcl 13295 Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 13-Jan-2015.)
 |-  .xb  =  (.g `  G )   =>    |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S ) 
 ->  ( N  .xb  X )  e.  S )
 
Theoremsubmmulg 13296 A group multiple is the same if evaluated in a submonoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  .xb  =  (.g `  G )   &    |-  H  =  ( Gs  S )   &    |-  .x.  =  (.g `  H )   =>    |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  ( N  .xb  X )  =  ( N  .x.  X ) )
 
7.2.3  Subgroups and Quotient groups
 
Syntaxcsubg 13297 Extend class notation with all subgroups of a group.
 class SubGrp
 
Syntaxcnsg 13298 Extend class notation with all normal subgroups of a group.
 class NrmSGrp
 
Syntaxcqg 13299 Quotient group equivalence class.
 class ~QG
 
Definitiondf-subg 13300* Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2m 13319), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 13314), contains the neutral element of the group (see subg0 13310) and contains the inverses for all of its elements (see subginvcl 13313). (Contributed by Mario Carneiro, 2-Dec-2014.)
 |- SubGrp  =  ( w  e.  Grp  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e.  Grp } )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15728
  Copyright terms: Public domain < Previous  Next >