HomeHome Intuitionistic Logic Explorer
Theorem List (p. 133 of 165)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13201-13300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremipndxnplusgndx 13201 The slot for the inner product is not the slot for the group operation in an extensible structure. (Contributed by AV, 29-Oct-2024.)
 |-  ( .i `  ndx )  =/=  ( +g  `  ndx )
 
Theoremipndxnmulrndx 13202 The slot for the inner product is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 29-Oct-2024.)
 |-  ( .i `  ndx )  =/=  ( .r `  ndx )
 
Theoremslotsdifipndx 13203 The slot for the scalar is not the index of other slots. (Contributed by AV, 12-Nov-2024.)
 |-  ( ( .s `  ndx )  =/=  ( .i `  ndx )  /\  (Scalar `  ndx )  =/=  ( .i `  ndx ) )
 
Theoremipsstrd 13204 A constructed inner product space is a structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
 |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .X.  e.  X )   &    |-  ( ph  ->  S  e.  Y )   &    |-  ( ph  ->  .x.  e.  Q )   &    |-  ( ph  ->  I  e.  Z )   =>    |-  ( ph  ->  A Struct  <.
 1 ,  8 >.
 )
 
Theoremipsbased 13205 The base set of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
 |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .X.  e.  X )   &    |-  ( ph  ->  S  e.  Y )   &    |-  ( ph  ->  .x.  e.  Q )   &    |-  ( ph  ->  I  e.  Z )   =>    |-  ( ph  ->  B  =  ( Base `  A )
 )
 
Theoremipsaddgd 13206 The additive operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
 |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .X.  e.  X )   &    |-  ( ph  ->  S  e.  Y )   &    |-  ( ph  ->  .x.  e.  Q )   &    |-  ( ph  ->  I  e.  Z )   =>    |-  ( ph  ->  .+  =  ( +g  `  A )
 )
 
Theoremipsmulrd 13207 The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
 |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .X.  e.  X )   &    |-  ( ph  ->  S  e.  Y )   &    |-  ( ph  ->  .x.  e.  Q )   &    |-  ( ph  ->  I  e.  Z )   =>    |-  ( ph  ->  .X.  =  ( .r `  A ) )
 
Theoremipsscad 13208 The set of scalars of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.)
 |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .X.  e.  X )   &    |-  ( ph  ->  S  e.  Y )   &    |-  ( ph  ->  .x.  e.  Q )   &    |-  ( ph  ->  I  e.  Z )   =>    |-  ( ph  ->  S  =  (Scalar `  A )
 )
 
Theoremipsvscad 13209 The scalar product operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.)
 |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .X.  e.  X )   &    |-  ( ph  ->  S  e.  Y )   &    |-  ( ph  ->  .x.  e.  Q )   &    |-  ( ph  ->  I  e.  Z )   =>    |-  ( ph  ->  .x.  =  ( .s `  A ) )
 
Theoremipsipd 13210 The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.)
 |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .X.  e.  X )   &    |-  ( ph  ->  S  e.  Y )   &    |-  ( ph  ->  .x.  e.  Q )   &    |-  ( ph  ->  I  e.  Z )   =>    |-  ( ph  ->  I  =  ( .i `  A ) )
 
Theoremressscag 13211 Scalar is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014.)
 |-  H  =  ( Gs  A )   &    |-  F  =  (Scalar `  G )   =>    |-  ( ( G  e.  X  /\  A  e.  V )  ->  F  =  (Scalar `  H ) )
 
Theoremressvscag 13212  .s is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014.)
 |-  H  =  ( Gs  A )   &    |-  .x.  =  ( .s `  G )   =>    |-  ( ( G  e.  X  /\  A  e.  V )  ->  .x.  =  ( .s `  H ) )
 
Theoremressipg 13213 The inner product is unaffected by restriction. (Contributed by Thierry Arnoux, 16-Jun-2019.)
 |-  H  =  ( Gs  A )   &    |-  .,  =  ( .i `  G )   =>    |-  ( ( G  e.  X  /\  A  e.  V )  ->  .,  =  ( .i `  H ) )
 
Theoremtsetndx 13214 Index value of the df-tset 13124 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  (TopSet `  ndx )  =  9
 
Theoremtsetid 13215 Utility theorem: index-independent form of df-tset 13124. (Contributed by NM, 20-Oct-2012.)
 |- TopSet  = Slot  (TopSet `  ndx )
 
Theoremtsetslid 13216 Slot property of TopSet. (Contributed by Jim Kingdon, 9-Feb-2023.)
 |-  (TopSet  = Slot  (TopSet `  ndx )  /\  (TopSet `  ndx )  e.  NN )
 
Theoremtsetndxnn 13217 The index of the slot for the group operation in an extensible structure is a positive integer. (Contributed by AV, 31-Oct-2024.)
 |-  (TopSet `  ndx )  e. 
 NN
 
Theorembasendxlttsetndx 13218 The index of the slot for the base set is less then the index of the slot for the topology in an extensible structure. (Contributed by AV, 31-Oct-2024.)
 |-  ( Base `  ndx )  < 
 (TopSet `  ndx )
 
Theoremtsetndxnbasendx 13219 The slot for the topology is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 31-Oct-2024.)
 |-  (TopSet `  ndx )  =/=  ( Base `  ndx )
 
Theoremtsetndxnplusgndx 13220 The slot for the topology is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  (TopSet `  ndx )  =/=  ( +g  `  ndx )
 
Theoremtsetndxnmulrndx 13221 The slot for the topology is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.)
 |-  (TopSet `  ndx )  =/=  ( .r `  ndx )
 
Theoremtsetndxnstarvndx 13222 The slot for the topology is not the slot for the involution in an extensible structure. (Contributed by AV, 11-Nov-2024.)
 |-  (TopSet `  ndx )  =/=  ( *r `  ndx )
 
Theoremslotstnscsi 13223 The slots Scalar,  .s and  .i are different from the slot TopSet. (Contributed by AV, 29-Oct-2024.)
 |-  ( (TopSet `  ndx )  =/=  (Scalar `  ndx )  /\  (TopSet `  ndx )  =/=  ( .s `  ndx )  /\  (TopSet `  ndx )  =/=  ( .i `  ndx ) )
 
Theoremtopgrpstrd 13224 A constructed topological group is a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
 |-  W  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  J >. }   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  J  e.  X )   =>    |-  ( ph  ->  W Struct  <.
 1 ,  9 >.
 )
 
Theoremtopgrpbasd 13225 The base set of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
 |-  W  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  J >. }   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  J  e.  X )   =>    |-  ( ph  ->  B  =  ( Base `  W )
 )
 
Theoremtopgrpplusgd 13226 The additive operation of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
 |-  W  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  J >. }   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  J  e.  X )   =>    |-  ( ph  ->  .+  =  ( +g  `  W )
 )
 
Theoremtopgrptsetd 13227 The topology of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
 |-  W  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  J >. }   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  J  e.  X )   =>    |-  ( ph  ->  J  =  (TopSet `  W )
 )
 
Theoremplendx 13228 Index value of the df-ple 13125 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.)
 |-  ( le `  ndx )  = ; 1 0
 
Theorempleid 13229 Utility theorem: self-referencing, index-independent form of df-ple 13125. (Contributed by NM, 9-Nov-2012.) (Revised by AV, 9-Sep-2021.)
 |- 
 le  = Slot  ( le ` 
 ndx )
 
Theorempleslid 13230 Slot property of  le. (Contributed by Jim Kingdon, 9-Feb-2023.)
 |-  ( le  = Slot  ( le `  ndx )  /\  ( le `  ndx )  e.  NN )
 
Theoremplendxnn 13231 The index value of the order slot is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 30-Oct-2024.)
 |-  ( le `  ndx )  e.  NN
 
Theorembasendxltplendx 13232 The index value of the  Base slot is less than the index value of the  le slot. (Contributed by AV, 30-Oct-2024.)
 |-  ( Base `  ndx )  < 
 ( le `  ndx )
 
Theoremplendxnbasendx 13233 The slot for the order is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 30-Oct-2024.)
 |-  ( le `  ndx )  =/=  ( Base `  ndx )
 
Theoremplendxnplusgndx 13234 The slot for the "less than or equal to" ordering is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  ( le `  ndx )  =/=  ( +g  `  ndx )
 
Theoremplendxnmulrndx 13235 The slot for the "less than or equal to" ordering is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 1-Nov-2024.)
 |-  ( le `  ndx )  =/=  ( .r `  ndx )
 
Theoremplendxnscandx 13236 The slot for the "less than or equal to" ordering is not the slot for the scalar in an extensible structure. (Contributed by AV, 1-Nov-2024.)
 |-  ( le `  ndx )  =/=  (Scalar `  ndx )
 
Theoremplendxnvscandx 13237 The slot for the "less than or equal to" ordering is not the slot for the scalar product in an extensible structure. (Contributed by AV, 1-Nov-2024.)
 |-  ( le `  ndx )  =/=  ( .s `  ndx )
 
Theoremslotsdifplendx 13238 The index of the slot for the distance is not the index of other slots. (Contributed by AV, 11-Nov-2024.)
 |-  ( ( *r `
  ndx )  =/=  ( le `  ndx )  /\  (TopSet `  ndx )  =/=  ( le `  ndx ) )
 
Theoremocndx 13239 Index value of the df-ocomp 13126 slot. (Contributed by Mario Carneiro, 25-Oct-2015.) (New usage is discouraged.)
 |-  ( oc `  ndx )  = ; 1 1
 
Theoremocid 13240 Utility theorem: index-independent form of df-ocomp 13126. (Contributed by Mario Carneiro, 25-Oct-2015.)
 |- 
 oc  = Slot  ( oc ` 
 ndx )
 
Theorembasendxnocndx 13241 The slot for the orthocomplementation is not the slot for the base set in an extensible structure. (Contributed by AV, 11-Nov-2024.)
 |-  ( Base `  ndx )  =/=  ( oc `  ndx )
 
Theoremplendxnocndx 13242 The slot for the orthocomplementation is not the slot for the order in an extensible structure. (Contributed by AV, 11-Nov-2024.)
 |-  ( le `  ndx )  =/=  ( oc `  ndx )
 
Theoremdsndx 13243 Index value of the df-ds 13127 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  ( dist `  ndx )  = ; 1
 2
 
Theoremdsid 13244 Utility theorem: index-independent form of df-ds 13127. (Contributed by Mario Carneiro, 23-Dec-2013.)
 |- 
 dist  = Slot  ( dist `  ndx )
 
Theoremdsslid 13245 Slot property of  dist. (Contributed by Jim Kingdon, 6-May-2023.)
 |-  ( dist  = Slot  ( dist ` 
 ndx )  /\  ( dist `  ndx )  e. 
 NN )
 
Theoremdsndxnn 13246 The index of the slot for the distance in an extensible structure is a positive integer. (Contributed by AV, 28-Oct-2024.)
 |-  ( dist `  ndx )  e. 
 NN
 
Theorembasendxltdsndx 13247 The index of the slot for the base set is less then the index of the slot for the distance in an extensible structure. (Contributed by AV, 28-Oct-2024.)
 |-  ( Base `  ndx )  < 
 ( dist `  ndx )
 
Theoremdsndxnbasendx 13248 The slot for the distance is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 28-Oct-2024.)
 |-  ( dist `  ndx )  =/=  ( Base `  ndx )
 
Theoremdsndxnplusgndx 13249 The slot for the distance function is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
 |-  ( dist `  ndx )  =/=  ( +g  `  ndx )
 
Theoremdsndxnmulrndx 13250 The slot for the distance function is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.)
 |-  ( dist `  ndx )  =/=  ( .r `  ndx )
 
Theoremslotsdnscsi 13251 The slots Scalar,  .s and  .i are different from the slot  dist. (Contributed by AV, 29-Oct-2024.)
 |-  ( ( dist `  ndx )  =/=  (Scalar `  ndx )  /\  ( dist `  ndx )  =/=  ( .s `  ndx )  /\  ( dist ` 
 ndx )  =/=  ( .i `  ndx ) )
 
Theoremdsndxntsetndx 13252 The slot for the distance function is not the slot for the topology in an extensible structure. (Contributed by AV, 29-Oct-2024.)
 |-  ( dist `  ndx )  =/=  (TopSet `  ndx )
 
Theoremslotsdifdsndx 13253 The index of the slot for the distance is not the index of other slots. (Contributed by AV, 11-Nov-2024.)
 |-  ( ( *r `
  ndx )  =/=  ( dist `  ndx )  /\  ( le `  ndx )  =/=  ( dist `  ndx ) )
 
Theoremunifndx 13254 Index value of the df-unif 13128 slot. (Contributed by Thierry Arnoux, 17-Dec-2017.) (New usage is discouraged.)
 |-  ( UnifSet `  ndx )  = ; 1
 3
 
Theoremunifid 13255 Utility theorem: index-independent form of df-unif 13128. (Contributed by Thierry Arnoux, 17-Dec-2017.)
 |- 
 UnifSet  = Slot  ( UnifSet `  ndx )
 
Theoremunifndxnn 13256 The index of the slot for the uniform set in an extensible structure is a positive integer. (Contributed by AV, 28-Oct-2024.)
 |-  ( UnifSet `  ndx )  e. 
 NN
 
Theorembasendxltunifndx 13257 The index of the slot for the base set is less then the index of the slot for the uniform set in an extensible structure. (Contributed by AV, 28-Oct-2024.)
 |-  ( Base `  ndx )  < 
 ( UnifSet `  ndx )
 
Theoremunifndxnbasendx 13258 The slot for the uniform set is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.)
 |-  ( UnifSet `  ndx )  =/=  ( Base `  ndx )
 
Theoremunifndxntsetndx 13259 The slot for the uniform set is not the slot for the topology in an extensible structure. (Contributed by AV, 28-Oct-2024.)
 |-  ( UnifSet `  ndx )  =/=  (TopSet `  ndx )
 
Theoremslotsdifunifndx 13260 The index of the slot for the uniform set is not the index of other slots. (Contributed by AV, 10-Nov-2024.)
 |-  ( ( ( +g  ` 
 ndx )  =/=  ( UnifSet
 `  ndx )  /\  ( .r `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( *r `  ndx )  =/=  ( UnifSet `  ndx ) )  /\  ( ( le `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( dist `  ndx )  =/=  ( UnifSet `  ndx ) ) )
 
Theoremhomndx 13261 Index value of the df-hom 13129 slot. (Contributed by Mario Carneiro, 7-Jan-2017.) (New usage is discouraged.)
 |-  ( Hom  `  ndx )  = ; 1 4
 
Theoremhomid 13262 Utility theorem: index-independent form of df-hom 13129. (Contributed by Mario Carneiro, 7-Jan-2017.)
 |- 
 Hom  = Slot  ( Hom  `  ndx )
 
Theoremhomslid 13263 Slot property of  Hom. (Contributed by Jim Kingdon, 20-Mar-2025.)
 |-  ( Hom  = Slot  ( Hom  `  ndx )  /\  ( Hom  `  ndx )  e. 
 NN )
 
Theoremccondx 13264 Index value of the df-cco 13130 slot. (Contributed by Mario Carneiro, 7-Jan-2017.) (New usage is discouraged.)
 |-  (comp `  ndx )  = ; 1
 5
 
Theoremccoid 13265 Utility theorem: index-independent form of df-cco 13130. (Contributed by Mario Carneiro, 7-Jan-2017.)
 |- comp  = Slot  (comp `  ndx )
 
Theoremccoslid 13266 Slot property of comp. (Contributed by Jim Kingdon, 20-Mar-2025.)
 |-  (comp  = Slot  (comp `  ndx )  /\  (comp `  ndx )  e.  NN )
 
6.1.3  Definition of the structure product
 
Syntaxcrest 13267 Extend class notation with the function returning a subspace topology.
 classt
 
Syntaxctopn 13268 Extend class notation with the topology extractor function.
 class  TopOpen
 
Definitiondf-rest 13269* Function returning the subspace topology induced by the topology  y and the set  x. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.)
 |-t  =  ( j  e.  _V ,  x  e.  _V  |->  ran  ( y  e.  j  |->  ( y  i^i  x ) ) )
 
Definitiondf-topn 13270 Define the topology extractor function. This differs from df-tset 13124 when a structure has been restricted using df-iress 13035; in this case the TopSet component will still have a topology over the larger set, and this function fixes this by restricting the topology as well. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  TopOpen  =  ( w  e. 
 _V  |->  ( (TopSet `  w )t  ( Base `  w )
 ) )
 
Theoremrestfn 13271 The subspace topology operator is a function on pairs. (Contributed by Mario Carneiro, 1-May-2015.)
 |-t  Fn  ( _V  X.  _V )
 
Theoremtopnfn 13272 The topology extractor function is a function on the universe. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  TopOpen 
 Fn  _V
 
Theoremrestval 13273* The subspace topology induced by the topology  J on the set  A. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.)
 |-  ( ( J  e.  V  /\  A  e.  W )  ->  ( Jt  A )  =  ran  ( x  e.  J  |->  ( x  i^i  A ) ) )
 
Theoremelrest 13274* The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
 |-  ( ( J  e.  V  /\  B  e.  W )  ->  ( A  e.  ( Jt  B )  <->  E. x  e.  J  A  =  ( x  i^i  B ) ) )
 
Theoremelrestr 13275 Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
 |-  ( ( J  e.  V  /\  S  e.  W  /\  A  e.  J ) 
 ->  ( A  i^i  S )  e.  ( Jt  S ) )
 
Theoremrestid2 13276 The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  ( ( A  e.  V  /\  J  C_  ~P A )  ->  ( Jt  A )  =  J )
 
Theoremrestsspw 13277 The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  ( Jt  A )  C_  ~P A
 
Theoremrestid 13278 The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009.) (Revised by Mario Carneiro, 13-Aug-2015.)
 |-  X  =  U. J   =>    |-  ( J  e.  V  ->  ( Jt  X )  =  J )
 
Theoremtopnvalg 13279 Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) (Revised by Jim Kingdon, 11-Feb-2023.)
 |-  B  =  ( Base `  W )   &    |-  J  =  (TopSet `  W )   =>    |-  ( W  e.  V  ->  ( Jt  B )  =  (
 TopOpen `  W ) )
 
Theoremtopnidg 13280 Value of the topology extractor function when the topology is defined over the same set as the base. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  B  =  ( Base `  W )   &    |-  J  =  (TopSet `  W )   =>    |-  ( ( W  e.  V  /\  J  C_  ~P B )  ->  J  =  (
 TopOpen `  W ) )
 
Theoremtopnpropgd 13281 The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Jim Kingdon, 13-Feb-2023.)
 |-  ( ph  ->  ( Base `  K )  =  ( Base `  L )
 )   &    |-  ( ph  ->  (TopSet `  K )  =  (TopSet `  L ) )   &    |-  ( ph  ->  K  e.  V )   &    |-  ( ph  ->  L  e.  W )   =>    |-  ( ph  ->  ( TopOpen `  K )  =  (
 TopOpen `  L ) )
 
Syntaxctg 13282 Extend class notation with a function that converts a basis to its corresponding topology.
 class  topGen
 
Syntaxcpt 13283 Extend class notation with a function whose value is a product topology.
 class  Xt_
 
Syntaxc0g 13284 Extend class notation with group identity element.
 class  0g
 
Syntaxcgsu 13285 Extend class notation to include finitely supported group sums.
 class  gsumg
 
Definitiondf-0g 13286* Define group identity element. Remark: this definition is required here because the symbol  0g is already used in df-igsum 13287. The related theorems will be provided later. (Contributed by NM, 20-Aug-2011.)
 |- 
 0g  =  ( g  e.  _V  |->  ( iota
 e ( e  e.  ( Base `  g )  /\  A. x  e.  ( Base `  g ) ( ( e ( +g  `  g ) x )  =  x  /\  ( x ( +g  `  g
 ) e )  =  x ) ) ) )
 
Definitiondf-igsum 13287* Define a finite group sum (also called "iterated sum") of a structure.

Given  G  gsumg  F where  F : A --> ( Base `  G ), the set of indices is  A and the values are given by  F at each index. A group sum over a multiplicative group may be viewed as a product. The definition is meaningful in different contexts, depending on the size of the index set  A and each demanding different properties of  G.

1. If  A  =  (/) and  G has an identity element, then the sum equals this identity.

2. If  A  =  ( M ... N ) and 
G is any magma, then the sum is the sum of the elements, evaluated left-to-right, i.e.,  ( ( F `  1 )  +  ( F ` 
2 ) )  +  ( F `  3
), etc.

3. This definition does not handle other cases.

(Contributed by FL, 5-Sep-2010.) (Revised by Mario Carneiro, 7-Dec-2014.) (Revised by Jim Kingdon, 27-Jun-2025.)

 |- 
 gsumg  =  ( w  e.  _V ,  f  e.  _V  |->  ( iota x ( ( dom  f  =  (/)  /\  x  =  ( 0g
 `  w ) )  \/  E. m E. n  e.  ( ZZ>= `  m ) ( dom  f  =  ( m
 ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  f
 ) `  n )
 ) ) ) )
 
Definitiondf-topgen 13288* Define a function that converts a basis to its corresponding topology. Equivalent to the definition of a topology generated by a basis in [Munkres] p. 78. (Contributed by NM, 16-Jul-2006.)
 |-  topGen  =  ( x  e. 
 _V  |->  { y  |  y 
 C_  U. ( x  i^i  ~P y ) } )
 
Definitiondf-pt 13289* Define the product topology on a collection of topologies. For convenience, it is defined on arbitrary collections of sets, expressed as a function from some index set to the subbases of each factor space. (Contributed by Mario Carneiro, 3-Feb-2015.)
 |- 
 Xt_  =  ( f  e.  _V  |->  ( topGen `  { x  |  E. g ( ( g  Fn  dom  f  /\  A. y  e.  dom  f ( g `  y )  e.  (
 f `  y )  /\  E. z  e.  Fin  A. y  e.  ( dom  f  \  z ) ( g `  y
 )  =  U. (
 f `  y )
 )  /\  x  =  X_ y  e.  dom  f
 ( g `  y
 ) ) } )
 )
 
Theoremtgval 13290* The topology generated by a basis. See also tgval2 14719 and tgval3 14726. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
 |-  ( B  e.  V  ->  ( topGen `  B )  =  { x  |  x  C_ 
 U. ( B  i^i  ~P x ) } )
 
Theoremtgvalex 13291 The topology generated by a basis is a set. (Contributed by Jim Kingdon, 4-Mar-2023.)
 |-  ( B  e.  V  ->  ( topGen `  B )  e.  _V )
 
Theoremptex 13292 Existence of the product topology. (Contributed by Jim Kingdon, 19-Mar-2025.)
 |-  ( F  e.  V  ->  ( Xt_ `  F )  e.  _V )
 
Syntaxcprds 13293 The function constructing structure products.
 class  X_s
 
Syntaxcpws 13294 The function constructing structure powers.
 class  ^s
 
Definitiondf-prds 13295* Define a structure product. This can be a product of groups, rings, modules, or ordered topological fields; any unused components will have garbage in them but this is usually not relevant for the purpose of inheriting the structures present in the factors. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
 |-  X_s  =  ( s  e.  _V ,  r  e.  _V  |->  [_ X_ x  e.  dom  r ( Base `  (
 r `  x )
 )  /  v ]_ [_ ( f  e.  v ,  g  e.  v  |->  X_ x  e.  dom  r ( ( f `
  x ) ( Hom  `  ( r `  x ) ) ( g `  x ) ) )  /  h ]_ ( ( { <. (
 Base `  ndx ) ,  v >. ,  <. ( +g  ` 
 ndx ) ,  (
 f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( +g  `  ( r `  x ) ) ( g `
  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `
  x ) ( .r `  ( r `
  x ) ) ( g `  x ) ) ) )
 >. }  u.  { <. (Scalar `  ndx ) ,  s >. ,  <. ( .s `  ndx ) ,  ( f  e.  ( Base `  s
 ) ,  g  e.  v  |->  ( x  e. 
 dom  r  |->  ( f ( .s `  (
 r `  x )
 ) ( g `  x ) ) ) ) >. ,  <. ( .i
 `  ndx ) ,  (
 f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `
  x ) ( .i `  ( r `
  x ) ) ( g `  x ) ) ) ) ) >. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  r )
 ) >. ,  <. ( le ` 
 ndx ) ,  { <. f ,  g >.  |  ( { f ,  g }  C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  ( r `  x ) ) ( g `
  x ) ) } >. ,  <. ( dist ` 
 ndx ) ,  (
 f  e.  v ,  g  e.  v  |->  sup ( ( ran  ( x  e.  dom  r  |->  ( ( f `  x ) ( dist `  (
 r `  x )
 ) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  h >. , 
 <. (comp `  ndx ) ,  ( a  e.  (
 v  X.  v ) ,  c  e.  v  |->  ( d  e.  (
 ( 2nd `  a ) h c ) ,  e  e.  ( h `
  a )  |->  ( x  e.  dom  r  |->  ( ( d `  x ) ( <. ( ( 1st `  a
 ) `  x ) ,  ( ( 2nd `  a
 ) `  x ) >. (comp `  ( r `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } )
 ) )
 
Theoremreldmprds 13296 The structure product is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.)
 |- 
 Rel  dom  X_s
 
Theoremprdsex 13297 Existence of the structure product. (Contributed by Jim Kingdon, 18-Mar-2025.)
 |-  ( ( S  e.  V  /\  R  e.  W )  ->  ( S X_s R )  e.  _V )
 
Theoremimasvalstrd 13298 An image structure value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
 |-  U  =  ( ( { <. ( Base `  ndx ) ,  B >. , 
 <. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  .,  >. } )  u.  { <. (TopSet `  ndx ) ,  O >. ,  <. ( le ` 
 ndx ) ,  L >. ,  <. ( dist `  ndx ) ,  D >. } )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .X.  e.  X )   &    |-  ( ph  ->  S  e.  Y )   &    |-  ( ph  ->  .x.  e.  Z )   &    |-  ( ph  ->  .,  e.  P )   &    |-  ( ph  ->  O  e.  Q )   &    |-  ( ph  ->  L  e.  R )   &    |-  ( ph  ->  D  e.  A )   =>    |-  ( ph  ->  U Struct  <.
 1 , ; 1 2 >. )
 
Theoremprdsvalstrd 13299 Structure product value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
 |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  .X.  e.  X )   &    |-  ( ph  ->  S  e.  Y )   &    |-  ( ph  ->  .x. 
 e.  Z )   &    |-  ( ph  ->  .,  e.  P )   &    |-  ( ph  ->  O  e.  Q )   &    |-  ( ph  ->  L  e.  R )   &    |-  ( ph  ->  D  e.  A )   &    |-  ( ph  ->  H  e.  T )   &    |-  ( ph  ->  .xb 
 e.  U )   =>    |-  ( ph  ->  ( ( { <. ( Base ` 
 ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  .,  >. } )  u.  ( { <. (TopSet `  ndx ) ,  O >. , 
 <. ( le `  ndx ) ,  L >. , 
 <. ( dist `  ndx ) ,  D >. }  u.  { <. ( Hom  `  ndx ) ,  H >. , 
 <. (comp `  ndx ) , 
 .xb  >. } ) ) Struct  <. 1 , ; 1 5 >. )
 
Theoremprdsvallem 13300* Lemma for prdsval 13301. (Contributed by Stefan O'Rear, 3-Jan-2015.) Extracted from the former proof of prdsval 13301, dependency on df-hom 13129 removed. (Revised by AV, 13-Oct-2024.)
 |-  ( f  e.  v ,  g  e.  v  |->  X_ x  e.  dom  r ( ( f `
  x ) ( Hom  `  ( r `  x ) ) ( g `  x ) ) )  e.  _V
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16411
  Copyright terms: Public domain < Previous  Next >