HomeHome Intuitionistic Logic Explorer
Theorem List (p. 133 of 162)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13201-13300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorempwselbas 13201 An element of a structure power is a function from the index set to the base set of the structure. (Contributed by Mario Carneiro, 11-Jan-2015.) (Revised by Mario Carneiro, 5-Jun-2015.)
 |-  Y  =  ( R 
 ^s  I )   &    |-  B  =  (
 Base `  R )   &    |-  V  =  ( Base `  Y )   &    |-  ( ph  ->  R  e.  W )   &    |-  ( ph  ->  I  e.  Z )   &    |-  ( ph  ->  X  e.  V )   =>    |-  ( ph  ->  X : I --> B )
 
Theorempwsplusgval 13202 Value of addition in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.)
 |-  Y  =  ( R 
 ^s  I )   &    |-  B  =  (
 Base `  Y )   &    |-  ( ph  ->  R  e.  V )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  F  e.  B )   &    |-  ( ph  ->  G  e.  B )   &    |- 
 .+  =  ( +g  `  R )   &    |-  .+b  =  ( +g  `  Y )   =>    |-  ( ph  ->  ( F  .+b  G )  =  ( F  oF  .+  G ) )
 
Theorempwsmulrval 13203 Value of multiplication in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.)
 |-  Y  =  ( R 
 ^s  I )   &    |-  B  =  (
 Base `  Y )   &    |-  ( ph  ->  R  e.  V )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  F  e.  B )   &    |-  ( ph  ->  G  e.  B )   &    |- 
 .x.  =  ( .r `  R )   &    |-  .xb  =  ( .r `  Y )   =>    |-  ( ph  ->  ( F  .xb  G )  =  ( F  oF  .x.  G ) )
 
Theorempwsdiagel 13204 Membership of diagonal elements in the structure power base set. (Contributed by Stefan O'Rear, 24-Jan-2015.)
 |-  Y  =  ( R 
 ^s  I )   &    |-  B  =  (
 Base `  R )   &    |-  C  =  ( Base `  Y )   =>    |-  (
 ( ( R  e.  V  /\  I  e.  W )  /\  A  e.  B )  ->  ( I  X.  { A } )  e.  C )
 
Theorempwssnf1o 13205* Triviality of singleton powers: set equipollence. (Contributed by Stefan O'Rear, 24-Jan-2015.)
 |-  Y  =  ( R 
 ^s 
 { I } )   &    |-  B  =  ( Base `  R )   &    |-  F  =  ( x  e.  B  |->  ( { I }  X.  { x } ) )   &    |-  C  =  ( Base `  Y )   =>    |-  ( ( R  e.  V  /\  I  e.  W )  ->  F : B -1-1-onto-> C )
 
6.1.4  Definition of the structure quotient
 
Syntaxcimas 13206 Image structure function.
 class  "s
 
Syntaxcqus 13207 Quotient structure function.
 class  /.s
 
Syntaxcxps 13208 Binary product structure function.
 class  X.s
 
Definitiondf-iimas 13209* Define an image structure, which takes a structure and a function on the base set, and maps all the operations via the function. For this to work properly  f must either be injective or satisfy the well-definedness condition  f ( a )  =  f ( c )  /\  f ( b )  =  f ( d )  ->  f (
a  +  b )  =  f ( c  +  d ) for each relevant operation.

Note that although we call this an "image" by association to df-ima 4696, in order to keep the definition simple we consider only the case when the domain of  F is equal to the base set of  R. Other cases can be achieved by restricting 
F (with df-res 4695) and/or  R ( with df-iress 12915) to their common domain. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by AV, 6-Oct-2020.)

 |-  "s  =  ( f  e.  _V ,  r  e.  _V  |->  [_ ( Base `  r )  /  v ]_ { <. (
 Base `  ndx ) , 
 ran  f >. ,  <. (
 +g  `  ndx ) , 
 U_ p  e.  v  U_ q  e.  v  { <.
 <. ( f `  p ) ,  ( f `  q ) >. ,  (
 f `  ( p ( +g  `  r )
 q ) ) >. }
 >. ,  <. ( .r `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. ( f `
  p ) ,  ( f `  q
 ) >. ,  ( f `
  ( p ( .r `  r ) q ) ) >. }
 >. } )
 
Definitiondf-qus 13210* Define a quotient ring (or quotient group), which is a special case of an image structure df-iimas 13209 where the image function is  x  |->  [ x ] e. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |- 
 /.s 
 =  ( r  e. 
 _V ,  e  e. 
 _V  |->  ( ( x  e.  ( Base `  r
 )  |->  [ x ] e
 )  "s  r ) )
 
Definitiondf-xps 13211* Define a binary product on structures. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Jim Kingdon, 25-Sep-2023.)
 |- 
 X.s 
 =  ( r  e. 
 _V ,  s  e. 
 _V  |->  ( `' ( x  e.  ( Base `  r ) ,  y  e.  ( Base `  s )  |->  { <. (/) ,  x >. , 
 <. 1o ,  y >. } )  "s  ( (Scalar `  r
 ) X_s { <. (/) ,  r >. , 
 <. 1o ,  s >. } ) ) )
 
Theoremimasex 13212 Existence of the image structure. (Contributed by Jim Kingdon, 13-Mar-2025.)
 |-  ( ( F  e.  V  /\  R  e.  W )  ->  ( F  "s  R )  e.  _V )
 
Theoremimasival 13213* Value of an image structure. The is a lemma for the theorems imasbas 13214, imasplusg 13215, and imasmulr 13216 and should not be needed once they are proved. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Jim Kingdon, 11-Mar-2025.) (New usage is discouraged.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |- 
 .+  =  ( +g  `  R )   &    |-  .X.  =  ( .r `  R )   &    |-  .x.  =  ( .s `  R )   &    |-  ( ph  ->  .+b  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `
  p ) ,  ( F `  q
 ) >. ,  ( F `
  ( p  .+  q ) ) >. } )   &    |-  ( ph  ->  .xb 
 =  U_ p  e.  V  U_ q  e.  V  { <.
 <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p  .X.  q ) ) >. } )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ph  ->  R  e.  Z )   =>    |-  ( ph  ->  U  =  { <. ( Base `  ndx ) ,  B >. , 
 <. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .xb  >. } )
 
Theoremimasbas 13214 The base set of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 6-Oct-2020.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ph  ->  R  e.  Z )   =>    |-  ( ph  ->  B  =  ( Base `  U ) )
 
Theoremimasplusg 13215* The group operation in an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ph  ->  R  e.  Z )   &    |-  .+  =  ( +g  `  R )   &    |-  .+b  =  ( +g  `  U )   =>    |-  ( ph  ->  .+b  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `
  p ) ,  ( F `  q
 ) >. ,  ( F `
  ( p  .+  q ) ) >. } )
 
Theoremimasmulr 13216* The ring multiplication in an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ph  ->  R  e.  Z )   &    |-  .x.  =  ( .r `  R )   &    |-  .xb 
 =  ( .r `  U )   =>    |-  ( ph  ->  .xb  =  U_ p  e.  V  U_ q  e.  V  { <. <.
 ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p  .x.  q ) ) >. } )
 
Theoremf1ocpbllem 13217 Lemma for f1ocpbl 13218. (Contributed by Mario Carneiro, 24-Feb-2015.)
 |-  ( ph  ->  F : V -1-1-onto-> X )   =>    |-  ( ( ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V ) )  ->  ( (
 ( F `  A )  =  ( F `  C )  /\  ( F `  B )  =  ( F `  D ) )  <->  ( A  =  C  /\  B  =  D ) ) )
 
Theoremf1ocpbl 13218 An injection is compatible with any operations on the base set. (Contributed by Mario Carneiro, 24-Feb-2015.)
 |-  ( ph  ->  F : V -1-1-onto-> X )   =>    |-  ( ( ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V ) )  ->  ( (
 ( F `  A )  =  ( F `  C )  /\  ( F `  B )  =  ( F `  D ) )  ->  ( F `
  ( A  .+  B ) )  =  ( F `  ( C  .+  D ) ) ) )
 
Theoremf1ovscpbl 13219 An injection is compatible with any operations on the base set. (Contributed by Mario Carneiro, 15-Aug-2015.)
 |-  ( ph  ->  F : V -1-1-onto-> X )   =>    |-  ( ( ph  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V )
 )  ->  ( ( F `  B )  =  ( F `  C )  ->  ( F `  ( A  .+  B ) )  =  ( F `
  ( A  .+  C ) ) ) )
 
Theoremf1olecpbl 13220 An injection is compatible with any relations on the base set. (Contributed by Mario Carneiro, 24-Feb-2015.)
 |-  ( ph  ->  F : V -1-1-onto-> X )   =>    |-  ( ( ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V ) )  ->  ( (
 ( F `  A )  =  ( F `  C )  /\  ( F `  B )  =  ( F `  D ) )  ->  ( A N B  <->  C N D ) ) )
 
Theoremimasaddfnlemg 13221* The image structure operation is a function if the original operation is compatible with the function. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .x.  b )
 )  =  ( F `
  ( p  .x.  q ) ) ) )   &    |-  ( ph  ->  .xb 
 =  U_ p  e.  V  U_ q  e.  V  { <.
 <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p  .x.  q ) ) >. } )   &    |-  ( ph  ->  V  e.  W )   &    |-  ( ph  ->  .x.  e.  C )   =>    |-  ( ph  ->  .xb  Fn  ( B  X.  B ) )
 
Theoremimasaddvallemg 13222* The operation of an image structure is defined to distribute over the mapping function. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .x.  b )
 )  =  ( F `
  ( p  .x.  q ) ) ) )   &    |-  ( ph  ->  .xb 
 =  U_ p  e.  V  U_ q  e.  V  { <.
 <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p  .x.  q ) ) >. } )   &    |-  ( ph  ->  V  e.  W )   &    |-  ( ph  ->  .x.  e.  C )   =>    |-  ( ( ph  /\  X  e.  V  /\  Y  e.  V )  ->  ( ( F `  X ) 
 .xb  ( F `  Y ) )  =  ( F `  ( X  .x.  Y ) ) )
 
Theoremimasaddflemg 13223* The image set operations are closed if the original operation is. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .x.  b )
 )  =  ( F `
  ( p  .x.  q ) ) ) )   &    |-  ( ph  ->  .xb 
 =  U_ p  e.  V  U_ q  e.  V  { <.
 <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p  .x.  q ) ) >. } )   &    |-  ( ph  ->  V  e.  W )   &    |-  ( ph  ->  .x.  e.  C )   &    |-  ( ( ph  /\  ( p  e.  V  /\  q  e.  V )
 )  ->  ( p  .x.  q )  e.  V )   =>    |-  ( ph  ->  .xb  : ( B  X.  B ) --> B )
 
Theoremimasaddfn 13224* The image structure's group operation is a function. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 10-Jul-2015.)
 |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .x.  b )
 )  =  ( F `
  ( p  .x.  q ) ) ) )   &    |-  ( ph  ->  U  =  ( F  "s  R ) )   &    |-  ( ph  ->  V  =  ( Base `  R ) )   &    |-  ( ph  ->  R  e.  Z )   &    |-  .x.  =  ( +g  `  R )   &    |-  .xb  =  ( +g  `  U )   =>    |-  ( ph  ->  .xb  Fn  ( B  X.  B ) )
 
Theoremimasaddval 13225* The value of an image structure's group operation. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .x.  b )
 )  =  ( F `
  ( p  .x.  q ) ) ) )   &    |-  ( ph  ->  U  =  ( F  "s  R ) )   &    |-  ( ph  ->  V  =  ( Base `  R ) )   &    |-  ( ph  ->  R  e.  Z )   &    |-  .x.  =  ( +g  `  R )   &    |-  .xb  =  ( +g  `  U )   =>    |-  (
 ( ph  /\  X  e.  V  /\  Y  e.  V )  ->  ( ( F `
  X )  .xb  ( F `  Y ) )  =  ( F `
  ( X  .x.  Y ) ) )
 
Theoremimasaddf 13226* The image structure's group operation is closed in the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .x.  b )
 )  =  ( F `
  ( p  .x.  q ) ) ) )   &    |-  ( ph  ->  U  =  ( F  "s  R ) )   &    |-  ( ph  ->  V  =  ( Base `  R ) )   &    |-  ( ph  ->  R  e.  Z )   &    |-  .x.  =  ( +g  `  R )   &    |-  .xb  =  ( +g  `  U )   &    |-  (
 ( ph  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( p  .x.  q )  e.  V )   =>    |-  ( ph  ->  .xb 
 : ( B  X.  B ) --> B )
 
Theoremimasmulfn 13227* The image structure's ring multiplication is a function. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .x.  b )
 )  =  ( F `
  ( p  .x.  q ) ) ) )   &    |-  ( ph  ->  U  =  ( F  "s  R ) )   &    |-  ( ph  ->  V  =  ( Base `  R ) )   &    |-  ( ph  ->  R  e.  Z )   &    |-  .x.  =  ( .r `  R )   &    |-  .xb 
 =  ( .r `  U )   =>    |-  ( ph  ->  .xb  Fn  ( B  X.  B ) )
 
Theoremimasmulval 13228* The value of an image structure's ring multiplication. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .x.  b )
 )  =  ( F `
  ( p  .x.  q ) ) ) )   &    |-  ( ph  ->  U  =  ( F  "s  R ) )   &    |-  ( ph  ->  V  =  ( Base `  R ) )   &    |-  ( ph  ->  R  e.  Z )   &    |-  .x.  =  ( .r `  R )   &    |-  .xb 
 =  ( .r `  U )   =>    |-  ( ( ph  /\  X  e.  V  /\  Y  e.  V )  ->  ( ( F `  X ) 
 .xb  ( F `  Y ) )  =  ( F `  ( X  .x.  Y ) ) )
 
Theoremimasmulf 13229* The image structure's ring multiplication is closed in the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .x.  b )
 )  =  ( F `
  ( p  .x.  q ) ) ) )   &    |-  ( ph  ->  U  =  ( F  "s  R ) )   &    |-  ( ph  ->  V  =  ( Base `  R ) )   &    |-  ( ph  ->  R  e.  Z )   &    |-  .x.  =  ( .r `  R )   &    |-  .xb 
 =  ( .r `  U )   &    |-  ( ( ph  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( p 
 .x.  q )  e.  V )   =>    |-  ( ph  ->  .xb  : ( B  X.  B ) --> B )
 
Theoremqusval 13230* Value of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   &    |-  ( ph  ->  .~  e.  W )   &    |-  ( ph  ->  R  e.  Z )   =>    |-  ( ph  ->  U  =  ( F  "s  R )
 )
 
Theoremquslem 13231* The function in qusval 13230 is a surjection onto a quotient set. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   &    |-  ( ph  ->  .~  e.  W )   &    |-  ( ph  ->  R  e.  Z )   =>    |-  ( ph  ->  F : V -onto-> ( V /.  .~  ) )
 
Theoremqusex 13232 Existence of a quotient structure. (Contributed by Jim Kingdon, 25-Apr-2025.)
 |-  ( ( R  e.  V  /\  .~  e.  W )  ->  ( R  /.s  .~  )  e.  _V )
 
Theoremqusin 13233 Restrict the equivalence relation in a quotient structure to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .~  e.  W )   &    |-  ( ph  ->  R  e.  Z )   &    |-  ( ph  ->  (  .~  " V )  C_  V )   =>    |-  ( ph  ->  U  =  ( R  /.s  (  .~  i^i  ( V  X.  V ) ) ) )
 
Theoremqusbas 13234 Base set of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .~  e.  W )   &    |-  ( ph  ->  R  e.  Z )   =>    |-  ( ph  ->  ( V /.  .~  )  =  ( Base `  U )
 )
 
Theoremdivsfval 13235* Value of the function in qusval 13230. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
 |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  V  e.  W )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   =>    |-  ( ph  ->  ( F `  A )  =  [ A ]  .~  )
 
Theoremdivsfvalg 13236* Value of the function in qusval 13230. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
 |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  V  e.  W )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   &    |-  ( ph  ->  A  e.  V )   =>    |-  ( ph  ->  ( F `  A )  =  [ A ]  .~  )
 
Theoremercpbllemg 13237* Lemma for ercpbl 13238. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by AV, 12-Jul-2024.)
 |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  V  e.  W )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  V )   =>    |-  ( ph  ->  (
 ( F `  A )  =  ( F `  B )  <->  A  .~  B ) )
 
Theoremercpbl 13238* Translate the function compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
 |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  V  e.  W )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   &    |-  (
 ( ph  /\  ( a  e.  V  /\  b  e.  V ) )  ->  ( a  .+  b )  e.  V )   &    |-  ( ph  ->  ( ( A 
 .~  C  /\  B  .~  D )  ->  ( A  .+  B )  .~  ( C  .+  D ) ) )   =>    |-  ( ( ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V ) )  ->  ( (
 ( F `  A )  =  ( F `  C )  /\  ( F `  B )  =  ( F `  D ) )  ->  ( F `
  ( A  .+  B ) )  =  ( F `  ( C  .+  D ) ) ) )
 
Theoremerlecpbl 13239* Translate the relation compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
 |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  V  e.  W )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   &    |-  ( ph  ->  ( ( A 
 .~  C  /\  B  .~  D )  ->  ( A N B  <->  C N D ) ) )   =>    |-  ( ( ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V ) )  ->  ( (
 ( F `  A )  =  ( F `  C )  /\  ( F `  B )  =  ( F `  D ) )  ->  ( A N B  <->  C N D ) ) )
 
Theoremqusaddvallemg 13240* Value of an operation defined on a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  R  e.  Z )   &    |-  ( ph  ->  ( ( a 
 .~  p  /\  b  .~  q )  ->  (
 a  .x.  b )  .~  ( p  .x.  q
 ) ) )   &    |-  (
 ( ph  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( p  .x.  q )  e.  V )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   &    |-  ( ph  ->  .xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `
  p ) ,  ( F `  q
 ) >. ,  ( F `
  ( p  .x.  q ) ) >. } )   &    |-  ( ph  ->  .x. 
 e.  W )   =>    |-  ( ( ph  /\  X  e.  V  /\  Y  e.  V )  ->  ( [ X ]  .~  .xb  [ Y ]  .~  )  =  [
 ( X  .x.  Y ) ]  .~  )
 
Theoremqusaddflemg 13241* The operation of a quotient structure is a function. (Contributed by Mario Carneiro, 24-Feb-2015.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  R  e.  Z )   &    |-  ( ph  ->  ( ( a 
 .~  p  /\  b  .~  q )  ->  (
 a  .x.  b )  .~  ( p  .x.  q
 ) ) )   &    |-  (
 ( ph  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( p  .x.  q )  e.  V )   &    |-  F  =  ( x  e.  V  |->  [ x ]  .~  )   &    |-  ( ph  ->  .xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `
  p ) ,  ( F `  q
 ) >. ,  ( F `
  ( p  .x.  q ) ) >. } )   &    |-  ( ph  ->  .x. 
 e.  W )   =>    |-  ( ph  ->  .xb 
 : ( ( V
 /.  .~  )  X.  ( V /.  .~  )
 ) --> ( V /.  .~  ) )
 
Theoremqusaddval 13242* The addition in a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  R  e.  Z )   &    |-  ( ph  ->  ( ( a 
 .~  p  /\  b  .~  q )  ->  (
 a  .x.  b )  .~  ( p  .x.  q
 ) ) )   &    |-  (
 ( ph  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( p  .x.  q )  e.  V )   &    |-  .x.  =  ( +g  `  R )   &    |-  .xb  =  ( +g  `  U )   =>    |-  (
 ( ph  /\  X  e.  V  /\  Y  e.  V )  ->  ( [ X ]  .~  .xb  [ Y ]  .~  )  =  [
 ( X  .x.  Y ) ]  .~  )
 
Theoremqusaddf 13243* The addition in a quotient structure as a function. (Contributed by Mario Carneiro, 24-Feb-2015.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  R  e.  Z )   &    |-  ( ph  ->  ( ( a 
 .~  p  /\  b  .~  q )  ->  (
 a  .x.  b )  .~  ( p  .x.  q
 ) ) )   &    |-  (
 ( ph  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( p  .x.  q )  e.  V )   &    |-  .x.  =  ( +g  `  R )   &    |-  .xb  =  ( +g  `  U )   =>    |-  ( ph  ->  .xb  : ( ( V /.  .~  )  X.  ( V /.  .~  ) ) --> ( V
 /.  .~  ) )
 
Theoremqusmulval 13244* The multiplication in a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  R  e.  Z )   &    |-  ( ph  ->  ( ( a 
 .~  p  /\  b  .~  q )  ->  (
 a  .x.  b )  .~  ( p  .x.  q
 ) ) )   &    |-  (
 ( ph  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( p  .x.  q )  e.  V )   &    |-  .x.  =  ( .r `  R )   &    |-  .xb 
 =  ( .r `  U )   =>    |-  ( ( ph  /\  X  e.  V  /\  Y  e.  V )  ->  ( [ X ]  .~  .xb  [ Y ]  .~  )  =  [
 ( X  .x.  Y ) ]  .~  )
 
Theoremqusmulf 13245* The multiplication in a quotient structure as a function. (Contributed by Mario Carneiro, 24-Feb-2015.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  R  e.  Z )   &    |-  ( ph  ->  ( ( a 
 .~  p  /\  b  .~  q )  ->  (
 a  .x.  b )  .~  ( p  .x.  q
 ) ) )   &    |-  (
 ( ph  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( p  .x.  q )  e.  V )   &    |-  .x.  =  ( .r `  R )   &    |-  .xb 
 =  ( .r `  U )   =>    |-  ( ph  ->  .xb  : ( ( V /.  .~  )  X.  ( V /.  .~  ) ) --> ( V
 /.  .~  ) )
 
Theoremfnpr2o 13246 Function with a domain of  2o. (Contributed by Jim Kingdon, 25-Sep-2023.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. (/) ,  A >. ,  <. 1o ,  B >. }  Fn  2o )
 
Theoremfnpr2ob 13247 Biconditional version of fnpr2o 13246. (Contributed by Jim Kingdon, 27-Sep-2023.)
 |-  ( ( A  e.  _V 
 /\  B  e.  _V ) 
 <->  { <. (/) ,  A >. , 
 <. 1o ,  B >. }  Fn  2o )
 
Theoremfvpr0o 13248 The value of a function with a domain of (at most) two elements. (Contributed by Jim Kingdon, 25-Sep-2023.)
 |-  ( A  e.  V  ->  ( { <. (/) ,  A >. ,  <. 1o ,  B >. } `  (/) )  =  A )
 
Theoremfvpr1o 13249 The value of a function with a domain of (at most) two elements. (Contributed by Jim Kingdon, 25-Sep-2023.)
 |-  ( B  e.  V  ->  ( { <. (/) ,  A >. ,  <. 1o ,  B >. } `  1o )  =  B )
 
Theoremfvprif 13250 The value of the pair function at an element of  2o. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  ->  ( { <. (/) ,  A >. ,  <. 1o ,  B >. } `  C )  =  if ( C  =  (/) ,  A ,  B ) )
 
Theoremxpsfrnel 13251* Elementhood in the target space of the function  F appearing in xpsval 13259. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  ( G  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <->  ( G  Fn  2o  /\  ( G `  (/) )  e.  A  /\  ( G `  1o )  e.  B ) )
 
Theoremxpsfeq 13252 A function on  2o is determined by its values at zero and one. (Contributed by Mario Carneiro, 27-Aug-2015.)
 |-  ( G  Fn  2o  ->  { <. (/) ,  ( G `
  (/) ) >. ,  <. 1o ,  ( G `  1o ) >. }  =  G )
 
Theoremxpsfrnel2 13253* Elementhood in the target space of the function  F appearing in xpsval 13259. (Contributed by Mario Carneiro, 15-Aug-2015.)
 |-  ( { <. (/) ,  X >. ,  <. 1o ,  Y >. }  e.  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )  <->  ( X  e.  A  /\  Y  e.  B ) )
 
Theoremxpscf 13254 Equivalent condition for the pair function to be a proper function on  A. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( { <. (/) ,  X >. ,  <. 1o ,  Y >. } : 2o --> A  <->  ( X  e.  A  /\  Y  e.  A ) )
 
Theoremxpsfval 13255* The value of the function appearing in xpsval 13259. (Contributed by Mario Carneiro, 15-Aug-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  { <. (/) ,  x >. , 
 <. 1o ,  y >. } )   =>    |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( X F Y )  =  { <.
 (/) ,  X >. , 
 <. 1o ,  Y >. } )
 
Theoremxpsff1o 13256* The function appearing in xpsval 13259 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair  2o  =  { (/)
,  1o }. (Contributed by Mario Carneiro, 15-Aug-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  { <. (/) ,  x >. , 
 <. 1o ,  y >. } )   =>    |-  F : ( A  X.  B ) -1-1-onto-> X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
 
Theoremxpsfrn 13257* A short expression for the indexed cartesian product on two indices. (Contributed by Mario Carneiro, 15-Aug-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  { <. (/) ,  x >. , 
 <. 1o ,  y >. } )   =>    |- 
 ran  F  =  X_ k  e.  2o  if ( k  =  (/) ,  A ,  B )
 
Theoremxpsff1o2 13258* The function appearing in xpsval 13259 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair  2o  =  { (/)
,  1o }. (Contributed by Mario Carneiro, 24-Jan-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  { <. (/) ,  x >. , 
 <. 1o ,  y >. } )   =>    |-  F : ( A  X.  B ) -1-1-onto-> ran  F
 
Theoremxpsval 13259* Value of the binary structure product function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Jim Kingdon, 25-Sep-2023.)
 |-  T  =  ( R  X.s  S )   &    |-  X  =  (
 Base `  R )   &    |-  Y  =  ( Base `  S )   &    |-  ( ph  ->  R  e.  V )   &    |-  ( ph  ->  S  e.  W )   &    |-  F  =  ( x  e.  X ,  y  e.  Y  |->  { <. (/) ,  x >. ,  <. 1o ,  y >. } )   &    |-  G  =  (Scalar `  R )   &    |-  U  =  ( G X_s { <. (/) ,  R >. , 
 <. 1o ,  S >. } )   =>    |-  ( ph  ->  T  =  ( `' F  "s  U ) )
 
PART 7  BASIC ALGEBRAIC STRUCTURES
 
7.1  Monoids
 
7.1.1  Magmas

According to Wikipedia ("Magma (algebra)", 08-Jan-2020, https://en.wikipedia.org/wiki/magma_(algebra)) "In abstract algebra, a magma [...] is a basic kind of algebraic structure. Specifically, a magma consists of a set equipped with a single binary operation. The binary operation must be closed by definition but no other properties are imposed.".

Since the concept of a "binary operation" is used in different variants, these differences are explained in more detail in the following:

With df-mpo 5962, binary operations are defined by a rule, and with df-ov 5960, the value of a binary operation applied to two operands can be expressed. In both cases, the two operands can belong to different sets, and the result can be an element of a third set. However, according to Wikipedia "Binary operation", see https://en.wikipedia.org/wiki/Binary_operation 5960 (19-Jan-2020), "... a binary operation on a set  S is a mapping of the elements of the Cartesian product 
S  X.  S to S:  f : S  X.  S --> S. Because the result of performing the operation on a pair of elements of S is again an element of S, the operation is called a closed binary operation on S (or sometimes expressed as having the property of closure).". To distinguish this more restrictive definition (in Wikipedia and most of the literature) from the general case, binary operations mapping the elements of the Cartesian product  S  X.  S are more precisely called internal binary operations. If, in addition, the result is also contained in the set  S, the operation should be called closed internal binary operation. Therefore, a "binary operation on a set  S" according to Wikipedia is a "closed internal binary operation" in a more precise terminology. If the sets are different, the operation is explicitly called external binary operation (see Wikipedia https://en.wikipedia.org/wiki/Binary_operation#External_binary_operations 5960).

The definition of magmas (Mgm, see df-mgm 13263) concentrates on the closure property of the associated operation, and poses no additional restrictions on it. In this way, it is most general and flexible.

 
Syntaxcplusf 13260 Extend class notation with group addition as a function.
 class  +f
 
Syntaxcmgm 13261 Extend class notation with class of all magmas.
 class Mgm
 
Definitiondf-plusf 13262* Define group addition function. Usually we will use  +g directly instead of  +f, and they have the same behavior in most cases. The main advantage of  +f for any magma is that it is a guaranteed function (mgmplusf 13273), while  +g only has closure (mgmcl 13266). (Contributed by Mario Carneiro, 14-Aug-2015.)
 |- 
 +f  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g ) ,  y  e.  ( Base `  g )  |->  ( x ( +g  `  g ) y ) ) )
 
Definitiondf-mgm 13263* A magma is a set equipped with an everywhere defined internal operation. Definition 1 in [BourbakiAlg1] p. 1, or definition of a groupoid in section I.1 of [Bruck] p. 1. Note: The term "groupoid" is now widely used to refer to other objects: (small) categories all of whose morphisms are invertible, or groups with a partial function replacing the binary operation. Therefore, we will only use the term "magma" for the present notion in set.mm. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
 |- Mgm 
 =  { g  | 
 [. ( Base `  g
 )  /  b ]. [. ( +g  `  g
 )  /  o ]. A. x  e.  b  A. y  e.  b  ( x o y )  e.  b }
 
Theoremismgm 13264* The predicate "is a magma". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
 |-  B  =  ( Base `  M )   &    |-  .o.  =  (
 +g  `  M )   =>    |-  ( M  e.  V  ->  ( M  e. Mgm  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y )  e.  B ) )
 
Theoremismgmn0 13265* The predicate "is a magma" for a structure with a nonempty base set. (Contributed by AV, 29-Jan-2020.)
 |-  B  =  ( Base `  M )   &    |-  .o.  =  (
 +g  `  M )   =>    |-  ( A  e.  B  ->  ( M  e. Mgm  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y )  e.  B ) )
 
Theoremmgmcl 13266 Closure of the operation of a magma. (Contributed by FL, 14-Sep-2010.) (Revised by AV, 13-Jan-2020.)
 |-  B  =  ( Base `  M )   &    |-  .o.  =  (
 +g  `  M )   =>    |-  (
 ( M  e. Mgm  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .o.  Y )  e.  B )
 
Theoremisnmgm 13267 A condition for a structure not to be a magma. (Contributed by AV, 30-Jan-2020.) (Proof shortened by NM, 5-Feb-2020.)
 |-  B  =  ( Base `  M )   &    |-  .o.  =  (
 +g  `  M )   =>    |-  (
 ( X  e.  B  /\  Y  e.  B  /\  ( X  .o.  Y ) 
 e/  B )  ->  M  e/ Mgm )
 
Theoremmgmsscl 13268 If the base set of a magma is contained in the base set of another magma, and the group operation of the magma is the restriction of the group operation of the other magma to its base set, then the base set of the magma is closed under the group operation of the other magma. (Contributed by AV, 17-Feb-2024.)
 |-  B  =  ( Base `  G )   &    |-  S  =  (
 Base `  H )   =>    |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S 
 C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) ) 
 /\  ( X  e.  S  /\  Y  e.  S ) )  ->  ( X ( +g  `  G ) Y )  e.  S )
 
Theoremplusffvalg 13269* The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 2-Mar-2024.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  ( +f `  G )   =>    |-  ( G  e.  V  -> 
 .+^  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  y ) ) )
 
Theoremplusfvalg 13270 The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  ( +f `  G )   =>    |-  ( ( G  e.  V  /\  X  e.  B  /\  Y  e.  B ) 
 ->  ( X  .+^  Y )  =  ( X  .+  Y ) )
 
Theoremplusfeqg 13271 If the addition operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  ( +f `  G )   =>    |-  ( ( G  e.  V  /\  .+  Fn  ( B  X.  B ) ) 
 ->  .+^  =  .+  )
 
Theoremplusffng 13272 The group addition operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+^  =  ( +f `  G )   =>    |-  ( G  e.  V  -> 
 .+^  Fn  ( B  X.  B ) )
 
Theoremmgmplusf 13273 The group addition function of a magma is a function into its base set. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revisd by AV, 28-Jan-2020.)
 |-  B  =  ( Base `  M )   &    |-  .+^  =  ( +f `  M )   =>    |-  ( M  e. Mgm  ->  .+^  : ( B  X.  B ) --> B )
 
Theoremintopsn 13274 The internal operation for a set is the trivial operation iff the set is a singleton. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 23-Jan-2020.)
 |-  ( (  .o.  :
 ( B  X.  B )
 --> B  /\  Z  e.  B )  ->  ( B  =  { Z }  <->  .o. 
 =  { <. <. Z ,  Z >. ,  Z >. } ) )
 
Theoremmgmb1mgm1 13275 The only magma with a base set consisting of one element is the trivial magma (at least if its operation is an internal binary operation). (Contributed by AV, 23-Jan-2020.) (Revised by AV, 7-Feb-2020.)
 |-  B  =  ( Base `  M )   &    |-  .+  =  ( +g  `  M )   =>    |-  ( ( M  e. Mgm  /\  Z  e.  B  /\  .+  Fn  ( B  X.  B ) ) 
 ->  ( B  =  { Z }  <->  .+  =  { <. <. Z ,  Z >. ,  Z >. } ) )
 
Theoremmgm0 13276 Any set with an empty base set and any group operation is a magma. (Contributed by AV, 28-Aug-2021.)
 |-  ( ( M  e.  V  /\  ( Base `  M )  =  (/) )  ->  M  e. Mgm )
 
Theoremmgm1 13277 The structure with one element and the only closed internal operation for a singleton is a magma. (Contributed by AV, 10-Feb-2020.)
 |-  M  =  { <. (
 Base `  ndx ) ,  { I } >. , 
 <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
 >. }   =>    |-  ( I  e.  V  ->  M  e. Mgm )
 
Theoremopifismgmdc 13278* A structure with a group addition operation expressed by a conditional operator is a magma if both values of the conditional operator are contained in the base set. (Contributed by AV, 9-Feb-2020.)
 |-  B  =  ( Base `  M )   &    |-  ( +g  `  M )  =  ( x  e.  B ,  y  e.  B  |->  if ( ps ,  C ,  D )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  -> DECID  ps )   &    |-  ( ph  ->  E. x  x  e.  B )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  C  e.  B )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  D  e.  B )   =>    |-  ( ph  ->  M  e. Mgm )
 
7.1.2  Identity elements

According to Wikipedia ("Identity element", 7-Feb-2020, https://en.wikipedia.org/wiki/Identity_element): "In mathematics, an identity element, or neutral element, is a special type of element of a set with respect to a binary operation on that set, which leaves any element of the set unchanged when combined with it.". Or in more detail "... an element e of S is called a left identity if e * a = a for all a in S, and a right identity if a * e = a for all a in S. If e is both a left identity and a right identity, then it is called a two-sided identity, or simply an identity." We concentrate on two-sided identities in the following. The existence of an identity (an identity is unique if it exists, see mgmidmo 13279) is an important property of monoids, and therefore also for groups, but also for magmas not required to be associative. Magmas with an identity element are called "unital magmas" (see Definition 2 in [BourbakiAlg1] p. 12) or, if the magmas are cancellative, "loops" (see definition in [Bruck] p. 15).

In the context of extensible structures, the identity element (of any magma  M) is defined as "group identity element"  ( 0g `  M
), see df-0g 13165. Related theorems which are already valid for magmas are provided in the following.

 
Theoremmgmidmo 13279* A two-sided identity element is unique (if it exists) in any magma. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by NM, 17-Jun-2017.)
 |- 
 E* u  e.  B  A. x  e.  B  ( ( u  .+  x )  =  x  /\  ( x  .+  u )  =  x )
 
Theoremgrpidvalg 13280* The value of the identity element of a group. (Contributed by NM, 20-Aug-2011.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( G  e.  V  ->  .0.  =  ( iota
 e ( e  e.  B  /\  A. x  e.  B  ( ( e 
 .+  x )  =  x  /\  ( x 
 .+  e )  =  x ) ) ) )
 
Theoremgrpidpropdg 13281* If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, they have the same identity element. (Contributed by Mario Carneiro, 27-Nov-2014.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ph  ->  K  e.  V )   &    |-  ( ph  ->  L  e.  W )   &    |-  (
 ( ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  ( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )   =>    |-  ( ph  ->  ( 0g `  K )  =  ( 0g `  L ) )
 
Theoremfn0g 13282 The group zero extractor is a function. (Contributed by Stefan O'Rear, 10-Jan-2015.)
 |- 
 0g  Fn  _V
 
Theorem0g0 13283 The identity element function evaluates to the empty set on an empty structure. (Contributed by Stefan O'Rear, 2-Oct-2015.)
 |-  (/)  =  ( 0g `  (/) )
 
Theoremismgmid 13284* The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e 
 .+  x )  =  x  /\  ( x 
 .+  e )  =  x ) )   =>    |-  ( ph  ->  ( ( U  e.  B  /\  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x  .+  U )  =  x )
 ) 
 <->  .0.  =  U ) )
 
Theoremmgmidcl 13285* The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e 
 .+  x )  =  x  /\  ( x 
 .+  e )  =  x ) )   =>    |-  ( ph  ->  .0. 
 e.  B )
 
Theoremmgmlrid 13286* The identity element of a magma, if it exists, is a left and right identity. (Contributed by Mario Carneiro, 27-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e 
 .+  x )  =  x  /\  ( x 
 .+  e )  =  x ) )   =>    |-  ( ( ph  /\  X  e.  B ) 
 ->  ( (  .0.  .+  X )  =  X  /\  ( X  .+  .0.  )  =  X )
 )
 
Theoremismgmid2 13287* Show that a given element is the identity element of a magma. (Contributed by Mario Carneiro, 27-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  U  e.  B )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  ( U  .+  x )  =  x )   &    |-  (
 ( ph  /\  x  e.  B )  ->  ( x  .+  U )  =  x )   =>    |-  ( ph  ->  U  =  .0.  )
 
Theoremlidrideqd 13288* If there is a left and right identity element for any binary operation (group operation)  .+, both identity elements are equal. Generalization of statement in [Lang] p. 3: it is sufficient that "e" is a left identity element and "e`" is a right identity element instead of both being (two-sided) identity elements. (Contributed by AV, 26-Dec-2023.)
 |-  ( ph  ->  L  e.  B )   &    |-  ( ph  ->  R  e.  B )   &    |-  ( ph  ->  A. x  e.  B  ( L  .+  x )  =  x )   &    |-  ( ph  ->  A. x  e.  B  ( x  .+  R )  =  x )   =>    |-  ( ph  ->  L  =  R )
 
Theoremlidrididd 13289* If there is a left and right identity element for any binary operation (group operation)  .+, the left identity element (and therefore also the right identity element according to lidrideqd 13288) is equal to the two-sided identity element. (Contributed by AV, 26-Dec-2023.)
 |-  ( ph  ->  L  e.  B )   &    |-  ( ph  ->  R  e.  B )   &    |-  ( ph  ->  A. x  e.  B  ( L  .+  x )  =  x )   &    |-  ( ph  ->  A. x  e.  B  ( x  .+  R )  =  x )   &    |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ph  ->  L  =  .0.  )
 
Theoremgrpidd 13290* Deduce the identity element of a magma from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  G )
 )   &    |-  ( ph  ->  .0.  e.  B )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  (  .0.  .+  x )  =  x )   &    |-  (
 ( ph  /\  x  e.  B )  ->  ( x  .+  .0.  )  =  x )   =>    |-  ( ph  ->  .0.  =  ( 0g `  G ) )
 
Theoremmgmidsssn0 13291* Property of the set of identities of  G. Either  G has no identities, and  O  =  (/), or it has one and this identity is unique and identified by the  0g function. (Contributed by Mario Carneiro, 7-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  O  =  { x  e.  B  |  A. y  e.  B  ( ( x 
 .+  y )  =  y  /\  ( y 
 .+  x )  =  y ) }   =>    |-  ( G  e.  V  ->  O  C_  {  .0.  } )
 
Theoremgrpinvalem 13292* Lemma for grpinva 13293. (Contributed by NM, 9-Aug-2013.)
 |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y )  e.  B )   &    |-  ( ph  ->  O  e.  B )   &    |-  (
 ( ph  /\  x  e.  B )  ->  ( O  .+  x )  =  x )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  E. y  e.  B  ( y  .+  x )  =  O )   &    |-  (
 ( ph  /\  ps )  ->  X  e.  B )   &    |-  ( ( ph  /\  ps )  ->  ( X  .+  X )  =  X )   =>    |-  ( ( ph  /\  ps )  ->  X  =  O )
 
Theoremgrpinva 13293* Deduce right inverse from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
 |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y )  e.  B )   &    |-  ( ph  ->  O  e.  B )   &    |-  (
 ( ph  /\  x  e.  B )  ->  ( O  .+  x )  =  x )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  E. y  e.  B  ( y  .+  x )  =  O )   &    |-  (
 ( ph  /\  ps )  ->  X  e.  B )   &    |-  ( ( ph  /\  ps )  ->  N  e.  B )   &    |-  ( ( ph  /\  ps )  ->  ( N  .+  X )  =  O )   =>    |-  ( ( ph  /\  ps )  ->  ( X  .+  N )  =  O )
 
Theoremgrprida 13294* Deduce right identity from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
 |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y )  e.  B )   &    |-  ( ph  ->  O  e.  B )   &    |-  (
 ( ph  /\  x  e.  B )  ->  ( O  .+  x )  =  x )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  E. y  e.  B  ( y  .+  x )  =  O )   =>    |-  ( ( ph  /\  x  e.  B ) 
 ->  ( x  .+  O )  =  x )
 
7.1.3  Iterated sums in a magma

The symbol  gsumg is mostly used in the context of abelian groups. Therefore, it is usually called "group sum". It can be defined, however, in arbitrary magmas (then it should be called "iterated sum"). If the magma is not required to be commutative or associative, then the order of the summands and the order in which summations are done become important. If the magma is not unital, then one cannot define a meaningful empty sum. See the comment for df-igsum 13166.

 
Theoremfngsum 13295 Iterated sum has a universal domain. (Contributed by Jim Kingdon, 28-Jun-2025.)
 |- 
 gsumg  Fn  ( _V  X.  _V )
 
Theoremigsumvalx 13296* Expand out the substitutions in df-igsum 13166. (Contributed by Mario Carneiro, 18-Sep-2015.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  F  e.  X )   &    |-  ( ph  ->  dom  F  =  A )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  (
 iota x ( ( A  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  ( ZZ>=
 `  m ) ( A  =  ( m
 ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n ) ) ) ) )
 
Theoremigsumval 13297* Expand out the substitutions in df-igsum 13166. (Contributed by Mario Carneiro, 7-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  A  e.  X )   &    |-  ( ph  ->  F : A --> B )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  (
 iota x ( ( A  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  ( ZZ>=
 `  m ) ( A  =  ( m
 ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n ) ) ) ) )
 
Theoremgsumfzval 13298 An expression for  gsumg when summing over a finite set of sequential integers. (Contributed by Jim Kingdon, 14-Aug-2025.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  F : ( M ... N ) --> B )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  if ( N  <  M ,  .0.  ,  (  seq M (  .+  ,  F ) `
  N ) ) )
 
Theoremgsumpropd 13299 The group sum depends only on the base set and additive operation. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by Mario Carneiro, 18-Sep-2015.)
 |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  H  e.  X )   &    |-  ( ph  ->  ( Base `  G )  =  ( Base `  H )
 )   &    |-  ( ph  ->  ( +g  `  G )  =  ( +g  `  H ) )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( H  gsumg 
 F ) )
 
Theoremgsumpropd2 13300* A stronger version of gsumpropd 13299, working for magma, where only the closure of the addition operation on a common base is required, see gsummgmpropd 13301. (Contributed by Thierry Arnoux, 28-Jun-2017.)
 |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  H  e.  X )   &    |-  ( ph  ->  ( Base `  G )  =  ( Base `  H )
 )   &    |-  ( ( ph  /\  (
 s  e.  ( Base `  G )  /\  t  e.  ( Base `  G )
 ) )  ->  (
 s ( +g  `  G ) t )  e.  ( Base `  G )
 )   &    |-  ( ( ph  /\  (
 s  e.  ( Base `  G )  /\  t  e.  ( Base `  G )
 ) )  ->  (
 s ( +g  `  G ) t )  =  ( s ( +g  `  H ) t ) )   &    |-  ( ph  ->  Fun 
 F )   &    |-  ( ph  ->  ran 
 F  C_  ( Base `  G ) )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( H  gsumg 
 F ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16164
  Copyright terms: Public domain < Previous  Next >