| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lelttr | Unicode version | ||
| Description: Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 23-May-1999.) |
| Ref | Expression |
|---|---|
| lelttr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 529 |
. . . . 5
| |
| 2 | simpl1 1003 |
. . . . . 6
| |
| 3 | simpl2 1004 |
. . . . . 6
| |
| 4 | lenlt 8148 |
. . . . . 6
| |
| 5 | 2, 3, 4 | syl2anc 411 |
. . . . 5
|
| 6 | 1, 5 | mpbid 147 |
. . . 4
|
| 7 | 6 | pm2.21d 620 |
. . 3
|
| 8 | idd 21 |
. . 3
| |
| 9 | simprr 531 |
. . . 4
| |
| 10 | simpl3 1005 |
. . . . 5
| |
| 11 | axltwlin 8140 |
. . . . 5
| |
| 12 | 3, 10, 2, 11 | syl3anc 1250 |
. . . 4
|
| 13 | 9, 12 | mpd 13 |
. . 3
|
| 14 | 7, 8, 13 | mpjaod 720 |
. 2
|
| 15 | 14 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-pre-ltwlin 8038 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 |
| This theorem is referenced by: lelttri 8178 lelttrd 8197 letrp1 8921 ltmul12a 8933 bndndx 9294 uzind 9484 fnn0ind 9489 elfzo0z 10308 fzofzim 10312 elfzodifsumelfzo 10330 flqge 10425 modfzo0difsn 10540 expnlbnd2 10810 caubnd2 11428 mulcn2 11623 cn1lem 11625 climsqz 11646 climsqz2 11647 climcvg1nlem 11660 ltoddhalfle 12204 algcvgblem 12371 pclemub 12610 metss2lem 14969 logdivlti 15353 gausslemma2dlem2 15539 |
| Copyright terms: Public domain | W3C validator |