| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lelttr | Unicode version | ||
| Description: Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 23-May-1999.) |
| Ref | Expression |
|---|---|
| lelttr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 529 |
. . . . 5
| |
| 2 | simpl1 1002 |
. . . . . 6
| |
| 3 | simpl2 1003 |
. . . . . 6
| |
| 4 | lenlt 8119 |
. . . . . 6
| |
| 5 | 2, 3, 4 | syl2anc 411 |
. . . . 5
|
| 6 | 1, 5 | mpbid 147 |
. . . 4
|
| 7 | 6 | pm2.21d 620 |
. . 3
|
| 8 | idd 21 |
. . 3
| |
| 9 | simprr 531 |
. . . 4
| |
| 10 | simpl3 1004 |
. . . . 5
| |
| 11 | axltwlin 8111 |
. . . . 5
| |
| 12 | 3, 10, 2, 11 | syl3anc 1249 |
. . . 4
|
| 13 | 9, 12 | mpd 13 |
. . 3
|
| 14 | 7, 8, 13 | mpjaod 719 |
. 2
|
| 15 | 14 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-pre-ltwlin 8009 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 |
| This theorem is referenced by: lelttri 8149 lelttrd 8168 letrp1 8892 ltmul12a 8904 bndndx 9265 uzind 9454 fnn0ind 9459 elfzo0z 10277 fzofzim 10281 elfzodifsumelfzo 10294 flqge 10389 modfzo0difsn 10504 expnlbnd2 10774 caubnd2 11299 mulcn2 11494 cn1lem 11496 climsqz 11517 climsqz2 11518 climcvg1nlem 11531 ltoddhalfle 12075 algcvgblem 12242 pclemub 12481 metss2lem 14817 logdivlti 15201 gausslemma2dlem2 15387 |
| Copyright terms: Public domain | W3C validator |