Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lelttr | Unicode version |
Description: Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 23-May-1999.) |
Ref | Expression |
---|---|
lelttr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 526 | . . . . 5 | |
2 | simpl1 995 | . . . . . 6 | |
3 | simpl2 996 | . . . . . 6 | |
4 | lenlt 7995 | . . . . . 6 | |
5 | 2, 3, 4 | syl2anc 409 | . . . . 5 |
6 | 1, 5 | mpbid 146 | . . . 4 |
7 | 6 | pm2.21d 614 | . . 3 |
8 | idd 21 | . . 3 | |
9 | simprr 527 | . . . 4 | |
10 | simpl3 997 | . . . . 5 | |
11 | axltwlin 7987 | . . . . 5 | |
12 | 3, 10, 2, 11 | syl3anc 1233 | . . . 4 |
13 | 9, 12 | mpd 13 | . . 3 |
14 | 7, 8, 13 | mpjaod 713 | . 2 |
15 | 14 | ex 114 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 w3a 973 wcel 2141 class class class wbr 3989 cr 7773 clt 7954 cle 7955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-ltwlin 7887 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 |
This theorem is referenced by: lelttri 8025 lelttrd 8044 letrp1 8764 ltmul12a 8776 bndndx 9134 uzind 9323 fnn0ind 9328 elfzo0z 10140 fzofzim 10144 elfzodifsumelfzo 10157 flqge 10238 modfzo0difsn 10351 expnlbnd2 10601 caubnd2 11081 mulcn2 11275 cn1lem 11277 climsqz 11298 climsqz2 11299 climcvg1nlem 11312 ltoddhalfle 11852 algcvgblem 12003 pclemub 12241 metss2lem 13291 logdivlti 13596 |
Copyright terms: Public domain | W3C validator |