| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lelttr | Unicode version | ||
| Description: Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 23-May-1999.) |
| Ref | Expression |
|---|---|
| lelttr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 529 |
. . . . 5
| |
| 2 | simpl1 1024 |
. . . . . 6
| |
| 3 | simpl2 1025 |
. . . . . 6
| |
| 4 | lenlt 8222 |
. . . . . 6
| |
| 5 | 2, 3, 4 | syl2anc 411 |
. . . . 5
|
| 6 | 1, 5 | mpbid 147 |
. . . 4
|
| 7 | 6 | pm2.21d 622 |
. . 3
|
| 8 | idd 21 |
. . 3
| |
| 9 | simprr 531 |
. . . 4
| |
| 10 | simpl3 1026 |
. . . . 5
| |
| 11 | axltwlin 8214 |
. . . . 5
| |
| 12 | 3, 10, 2, 11 | syl3anc 1271 |
. . . 4
|
| 13 | 9, 12 | mpd 13 |
. . 3
|
| 14 | 7, 8, 13 | mpjaod 723 |
. 2
|
| 15 | 14 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-pre-ltwlin 8112 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 |
| This theorem is referenced by: lelttri 8252 lelttrd 8271 letrp1 8995 ltmul12a 9007 bndndx 9368 uzind 9558 fnn0ind 9563 elfzo0z 10384 fzofzim 10388 elfzodifsumelfzo 10407 flqge 10502 modfzo0difsn 10617 expnlbnd2 10887 swrdswrd 11237 pfxccatin12lem3 11264 caubnd2 11628 mulcn2 11823 cn1lem 11825 climsqz 11846 climsqz2 11847 climcvg1nlem 11860 ltoddhalfle 12404 algcvgblem 12571 pclemub 12810 metss2lem 15171 logdivlti 15555 gausslemma2dlem2 15741 |
| Copyright terms: Public domain | W3C validator |