ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lelttr Unicode version

Theorem lelttr 8115
Description: Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 23-May-1999.)
Assertion
Ref Expression
lelttr  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  B  /\  B  <  C )  ->  A  <  C
) )

Proof of Theorem lelttr
StepHypRef Expression
1 simprl 529 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  A  <_  B )
2 simpl1 1002 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  A  e.  RR )
3 simpl2 1003 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  B  e.  RR )
4 lenlt 8102 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
52, 3, 4syl2anc 411 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  ( A  <_  B  <->  -.  B  <  A ) )
61, 5mpbid 147 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  -.  B  <  A )
76pm2.21d 620 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  ( B  <  A  ->  A  <  C ) )
8 idd 21 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  ( A  <  C  ->  A  <  C ) )
9 simprr 531 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  B  <  C )
10 simpl3 1004 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  C  e.  RR )
11 axltwlin 8094 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR  /\  A  e.  RR )  ->  ( B  <  C  ->  ( B  <  A  \/  A  <  C ) ) )
123, 10, 2, 11syl3anc 1249 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  ( B  <  C  ->  ( B  <  A  \/  A  < 
C ) ) )
139, 12mpd 13 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  ( B  <  A  \/  A  < 
C ) )
147, 8, 13mpjaod 719 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  A  <  C )
1514ex 115 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  B  /\  B  <  C )  ->  A  <  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    e. wcel 2167   class class class wbr 4033   RRcr 7878    < clt 8061    <_ cle 8062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-pre-ltwlin 7992
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067
This theorem is referenced by:  lelttri  8132  lelttrd  8151  letrp1  8875  ltmul12a  8887  bndndx  9248  uzind  9437  fnn0ind  9442  elfzo0z  10260  fzofzim  10264  elfzodifsumelfzo  10277  flqge  10372  modfzo0difsn  10487  expnlbnd2  10757  caubnd2  11282  mulcn2  11477  cn1lem  11479  climsqz  11500  climsqz2  11501  climcvg1nlem  11514  ltoddhalfle  12058  algcvgblem  12217  pclemub  12456  metss2lem  14733  logdivlti  15117  gausslemma2dlem2  15303
  Copyright terms: Public domain W3C validator