ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lelttr Unicode version

Theorem lelttr 8235
Description: Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 23-May-1999.)
Assertion
Ref Expression
lelttr  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  B  /\  B  <  C )  ->  A  <  C
) )

Proof of Theorem lelttr
StepHypRef Expression
1 simprl 529 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  A  <_  B )
2 simpl1 1024 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  A  e.  RR )
3 simpl2 1025 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  B  e.  RR )
4 lenlt 8222 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
52, 3, 4syl2anc 411 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  ( A  <_  B  <->  -.  B  <  A ) )
61, 5mpbid 147 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  -.  B  <  A )
76pm2.21d 622 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  ( B  <  A  ->  A  <  C ) )
8 idd 21 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  ( A  <  C  ->  A  <  C ) )
9 simprr 531 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  B  <  C )
10 simpl3 1026 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  C  e.  RR )
11 axltwlin 8214 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR  /\  A  e.  RR )  ->  ( B  <  C  ->  ( B  <  A  \/  A  <  C ) ) )
123, 10, 2, 11syl3anc 1271 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  ( B  <  C  ->  ( B  <  A  \/  A  < 
C ) ) )
139, 12mpd 13 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  ( B  <  A  \/  A  < 
C ) )
147, 8, 13mpjaod 723 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  A  <  C )
1514ex 115 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  B  /\  B  <  C )  ->  A  <  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    /\ w3a 1002    e. wcel 2200   class class class wbr 4083   RRcr 7998    < clt 8181    <_ cle 8182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-pre-ltwlin 8112
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-cnv 4727  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187
This theorem is referenced by:  lelttri  8252  lelttrd  8271  letrp1  8995  ltmul12a  9007  bndndx  9368  uzind  9558  fnn0ind  9563  elfzo0z  10384  fzofzim  10388  elfzodifsumelfzo  10407  flqge  10502  modfzo0difsn  10617  expnlbnd2  10887  swrdswrd  11237  pfxccatin12lem3  11264  caubnd2  11628  mulcn2  11823  cn1lem  11825  climsqz  11846  climsqz2  11847  climcvg1nlem  11860  ltoddhalfle  12404  algcvgblem  12571  pclemub  12810  metss2lem  15171  logdivlti  15555  gausslemma2dlem2  15741
  Copyright terms: Public domain W3C validator