Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lelttr | Unicode version |
Description: Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 23-May-1999.) |
Ref | Expression |
---|---|
lelttr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 521 | . . . . 5 | |
2 | simpl1 985 | . . . . . 6 | |
3 | simpl2 986 | . . . . . 6 | |
4 | lenlt 7947 | . . . . . 6 | |
5 | 2, 3, 4 | syl2anc 409 | . . . . 5 |
6 | 1, 5 | mpbid 146 | . . . 4 |
7 | 6 | pm2.21d 609 | . . 3 |
8 | idd 21 | . . 3 | |
9 | simprr 522 | . . . 4 | |
10 | simpl3 987 | . . . . 5 | |
11 | axltwlin 7939 | . . . . 5 | |
12 | 3, 10, 2, 11 | syl3anc 1220 | . . . 4 |
13 | 9, 12 | mpd 13 | . . 3 |
14 | 7, 8, 13 | mpjaod 708 | . 2 |
15 | 14 | ex 114 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 w3a 963 wcel 2128 class class class wbr 3965 cr 7725 clt 7906 cle 7907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-pre-ltwlin 7839 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-xp 4591 df-cnv 4593 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 |
This theorem is referenced by: lelttri 7976 lelttrd 7994 letrp1 8713 ltmul12a 8725 bndndx 9083 uzind 9269 fnn0ind 9274 elfzo0z 10076 fzofzim 10080 elfzodifsumelfzo 10093 flqge 10174 modfzo0difsn 10287 expnlbnd2 10536 caubnd2 11010 mulcn2 11202 cn1lem 11204 climsqz 11225 climsqz2 11226 climcvg1nlem 11239 ltoddhalfle 11776 algcvgblem 11917 metss2lem 12868 logdivlti 13173 |
Copyright terms: Public domain | W3C validator |