ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lelttr Unicode version

Theorem lelttr 8161
Description: Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 23-May-1999.)
Assertion
Ref Expression
lelttr  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  B  /\  B  <  C )  ->  A  <  C
) )

Proof of Theorem lelttr
StepHypRef Expression
1 simprl 529 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  A  <_  B )
2 simpl1 1003 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  A  e.  RR )
3 simpl2 1004 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  B  e.  RR )
4 lenlt 8148 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
52, 3, 4syl2anc 411 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  ( A  <_  B  <->  -.  B  <  A ) )
61, 5mpbid 147 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  -.  B  <  A )
76pm2.21d 620 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  ( B  <  A  ->  A  <  C ) )
8 idd 21 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  ( A  <  C  ->  A  <  C ) )
9 simprr 531 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  B  <  C )
10 simpl3 1005 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  C  e.  RR )
11 axltwlin 8140 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR  /\  A  e.  RR )  ->  ( B  <  C  ->  ( B  <  A  \/  A  <  C ) ) )
123, 10, 2, 11syl3anc 1250 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  ( B  <  C  ->  ( B  <  A  \/  A  < 
C ) ) )
139, 12mpd 13 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  ( B  <  A  \/  A  < 
C ) )
147, 8, 13mpjaod 720 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  B  /\  B  <  C ) )  ->  A  <  C )
1514ex 115 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  B  /\  B  <  C )  ->  A  <  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    /\ w3a 981    e. wcel 2176   class class class wbr 4044   RRcr 7924    < clt 8107    <_ cle 8108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-pre-ltwlin 8038
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-xp 4681  df-cnv 4683  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113
This theorem is referenced by:  lelttri  8178  lelttrd  8197  letrp1  8921  ltmul12a  8933  bndndx  9294  uzind  9484  fnn0ind  9489  elfzo0z  10308  fzofzim  10312  elfzodifsumelfzo  10330  flqge  10425  modfzo0difsn  10540  expnlbnd2  10810  caubnd2  11428  mulcn2  11623  cn1lem  11625  climsqz  11646  climsqz2  11647  climcvg1nlem  11660  ltoddhalfle  12204  algcvgblem  12371  pclemub  12610  metss2lem  14969  logdivlti  15353  gausslemma2dlem2  15539
  Copyright terms: Public domain W3C validator