| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lelttr | Unicode version | ||
| Description: Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 23-May-1999.) |
| Ref | Expression |
|---|---|
| lelttr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 529 |
. . . . 5
| |
| 2 | simpl1 1002 |
. . . . . 6
| |
| 3 | simpl2 1003 |
. . . . . 6
| |
| 4 | lenlt 8102 |
. . . . . 6
| |
| 5 | 2, 3, 4 | syl2anc 411 |
. . . . 5
|
| 6 | 1, 5 | mpbid 147 |
. . . 4
|
| 7 | 6 | pm2.21d 620 |
. . 3
|
| 8 | idd 21 |
. . 3
| |
| 9 | simprr 531 |
. . . 4
| |
| 10 | simpl3 1004 |
. . . . 5
| |
| 11 | axltwlin 8094 |
. . . . 5
| |
| 12 | 3, 10, 2, 11 | syl3anc 1249 |
. . . 4
|
| 13 | 9, 12 | mpd 13 |
. . 3
|
| 14 | 7, 8, 13 | mpjaod 719 |
. 2
|
| 15 | 14 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltwlin 7992 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 |
| This theorem is referenced by: lelttri 8132 lelttrd 8151 letrp1 8875 ltmul12a 8887 bndndx 9248 uzind 9437 fnn0ind 9442 elfzo0z 10260 fzofzim 10264 elfzodifsumelfzo 10277 flqge 10372 modfzo0difsn 10487 expnlbnd2 10757 caubnd2 11282 mulcn2 11477 cn1lem 11479 climsqz 11500 climsqz2 11501 climcvg1nlem 11514 ltoddhalfle 12058 algcvgblem 12217 pclemub 12456 metss2lem 14733 logdivlti 15117 gausslemma2dlem2 15303 |
| Copyright terms: Public domain | W3C validator |