| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lelttr | Unicode version | ||
| Description: Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 23-May-1999.) |
| Ref | Expression |
|---|---|
| lelttr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 529 |
. . . . 5
| |
| 2 | simpl1 1002 |
. . . . . 6
| |
| 3 | simpl2 1003 |
. . . . . 6
| |
| 4 | lenlt 8104 |
. . . . . 6
| |
| 5 | 2, 3, 4 | syl2anc 411 |
. . . . 5
|
| 6 | 1, 5 | mpbid 147 |
. . . 4
|
| 7 | 6 | pm2.21d 620 |
. . 3
|
| 8 | idd 21 |
. . 3
| |
| 9 | simprr 531 |
. . . 4
| |
| 10 | simpl3 1004 |
. . . . 5
| |
| 11 | axltwlin 8096 |
. . . . 5
| |
| 12 | 3, 10, 2, 11 | syl3anc 1249 |
. . . 4
|
| 13 | 9, 12 | mpd 13 |
. . 3
|
| 14 | 7, 8, 13 | mpjaod 719 |
. 2
|
| 15 | 14 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7972 ax-resscn 7973 ax-pre-ltwlin 7994 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-pnf 8065 df-mnf 8066 df-xr 8067 df-ltxr 8068 df-le 8069 |
| This theorem is referenced by: lelttri 8134 lelttrd 8153 letrp1 8877 ltmul12a 8889 bndndx 9250 uzind 9439 fnn0ind 9444 elfzo0z 10262 fzofzim 10266 elfzodifsumelfzo 10279 flqge 10374 modfzo0difsn 10489 expnlbnd2 10759 caubnd2 11284 mulcn2 11479 cn1lem 11481 climsqz 11502 climsqz2 11503 climcvg1nlem 11516 ltoddhalfle 12060 algcvgblem 12227 pclemub 12466 metss2lem 14743 logdivlti 15127 gausslemma2dlem2 15313 |
| Copyright terms: Public domain | W3C validator |