| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrlelttr | Unicode version | ||
| Description: Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.) |
| Ref | Expression |
|---|---|
| xrlelttr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 529 |
. . . . 5
| |
| 2 | simpl1 1002 |
. . . . . 6
| |
| 3 | simpl2 1003 |
. . . . . 6
| |
| 4 | xrlenlt 8136 |
. . . . . 6
| |
| 5 | 2, 3, 4 | syl2anc 411 |
. . . . 5
|
| 6 | 1, 5 | mpbid 147 |
. . . 4
|
| 7 | 6 | pm2.21d 620 |
. . 3
|
| 8 | idd 21 |
. . 3
| |
| 9 | simprr 531 |
. . . 4
| |
| 10 | simpl3 1004 |
. . . . 5
| |
| 11 | xrltso 9917 |
. . . . . 6
| |
| 12 | sowlin 4366 |
. . . . . 6
| |
| 13 | 11, 12 | mpan 424 |
. . . . 5
|
| 14 | 3, 10, 2, 13 | syl3anc 1249 |
. . . 4
|
| 15 | 9, 14 | mpd 13 |
. . 3
|
| 16 | 7, 8, 15 | mpjaod 719 |
. 2
|
| 17 | 16 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-po 4342 df-iso 4343 df-xp 4680 df-cnv 4682 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 |
| This theorem is referenced by: xrlelttrd 9931 xrre 9941 xrre2 9942 iooss1 10037 iccssioo 10063 iccssico 10066 iocssioo 10084 ioossioo 10086 ico0 10402 bldisj 14844 xblm 14860 blsscls2 14936 metcnpi3 14960 |
| Copyright terms: Public domain | W3C validator |