ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrlelttr Unicode version

Theorem xrlelttr 9710
Description: Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
xrlelttr  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <_  B  /\  B  <  C )  ->  A  <  C
) )

Proof of Theorem xrlelttr
StepHypRef Expression
1 simprl 521 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  ->  A  <_  B )
2 simpl1 985 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  ->  A  e.  RR* )
3 simpl2 986 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  ->  B  e.  RR* )
4 xrlenlt 7942 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -.  B  <  A ) )
52, 3, 4syl2anc 409 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  -> 
( A  <_  B  <->  -.  B  <  A ) )
61, 5mpbid 146 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  ->  -.  B  <  A )
76pm2.21d 609 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  -> 
( B  <  A  ->  A  <  C ) )
8 idd 21 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  -> 
( A  <  C  ->  A  <  C ) )
9 simprr 522 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  ->  B  <  C )
10 simpl3 987 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  ->  C  e.  RR* )
11 xrltso 9703 . . . . . 6  |-  <  Or  RR*
12 sowlin 4280 . . . . . 6  |-  ( (  <  Or  RR*  /\  ( B  e.  RR*  /\  C  e.  RR*  /\  A  e. 
RR* ) )  -> 
( B  <  C  ->  ( B  <  A  \/  A  <  C ) ) )
1311, 12mpan 421 . . . . 5  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  A  e. 
RR* )  ->  ( B  <  C  ->  ( B  <  A  \/  A  <  C ) ) )
143, 10, 2, 13syl3anc 1220 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  -> 
( B  <  C  ->  ( B  <  A  \/  A  <  C ) ) )
159, 14mpd 13 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  -> 
( B  <  A  \/  A  <  C ) )
167, 8, 15mpjaod 708 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  ->  A  <  C )
1716ex 114 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <_  B  /\  B  <  C )  ->  A  <  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 963    e. wcel 2128   class class class wbr 3965    Or wor 4255   RR*cxr 7911    < clt 7912    <_ cle 7913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-cnex 7823  ax-resscn 7824  ax-pre-ltirr 7844  ax-pre-ltwlin 7845  ax-pre-lttrn 7846
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-po 4256  df-iso 4257  df-xp 4592  df-cnv 4594  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918
This theorem is referenced by:  xrlelttrd  9714  xrre  9724  xrre2  9725  iooss1  9820  iccssioo  9846  iccssico  9849  iocssioo  9867  ioossioo  9869  ico0  10161  bldisj  12812  xblm  12828  blsscls2  12904  metcnpi3  12928
  Copyright terms: Public domain W3C validator