Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrlelttr | Unicode version |
Description: Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.) |
Ref | Expression |
---|---|
xrlelttr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 521 | . . . . 5 | |
2 | simpl1 990 | . . . . . 6 | |
3 | simpl2 991 | . . . . . 6 | |
4 | xrlenlt 7963 | . . . . . 6 | |
5 | 2, 3, 4 | syl2anc 409 | . . . . 5 |
6 | 1, 5 | mpbid 146 | . . . 4 |
7 | 6 | pm2.21d 609 | . . 3 |
8 | idd 21 | . . 3 | |
9 | simprr 522 | . . . 4 | |
10 | simpl3 992 | . . . . 5 | |
11 | xrltso 9732 | . . . . . 6 | |
12 | sowlin 4298 | . . . . . 6 | |
13 | 11, 12 | mpan 421 | . . . . 5 |
14 | 3, 10, 2, 13 | syl3anc 1228 | . . . 4 |
15 | 9, 14 | mpd 13 | . . 3 |
16 | 7, 8, 15 | mpjaod 708 | . 2 |
17 | 16 | ex 114 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 w3a 968 wcel 2136 class class class wbr 3982 wor 4273 cxr 7932 clt 7933 cle 7934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-po 4274 df-iso 4275 df-xp 4610 df-cnv 4612 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 |
This theorem is referenced by: xrlelttrd 9746 xrre 9756 xrre2 9757 iooss1 9852 iccssioo 9878 iccssico 9881 iocssioo 9899 ioossioo 9901 ico0 10197 bldisj 13051 xblm 13067 blsscls2 13143 metcnpi3 13167 |
Copyright terms: Public domain | W3C validator |