| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrlelttr | Unicode version | ||
| Description: Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.) |
| Ref | Expression |
|---|---|
| xrlelttr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 529 |
. . . . 5
| |
| 2 | simpl1 1003 |
. . . . . 6
| |
| 3 | simpl2 1004 |
. . . . . 6
| |
| 4 | xrlenlt 8137 |
. . . . . 6
| |
| 5 | 2, 3, 4 | syl2anc 411 |
. . . . 5
|
| 6 | 1, 5 | mpbid 147 |
. . . 4
|
| 7 | 6 | pm2.21d 620 |
. . 3
|
| 8 | idd 21 |
. . 3
| |
| 9 | simprr 531 |
. . . 4
| |
| 10 | simpl3 1005 |
. . . . 5
| |
| 11 | xrltso 9918 |
. . . . . 6
| |
| 12 | sowlin 4367 |
. . . . . 6
| |
| 13 | 11, 12 | mpan 424 |
. . . . 5
|
| 14 | 3, 10, 2, 13 | syl3anc 1250 |
. . . 4
|
| 15 | 9, 14 | mpd 13 |
. . 3
|
| 16 | 7, 8, 15 | mpjaod 720 |
. 2
|
| 17 | 16 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-po 4343 df-iso 4344 df-xp 4681 df-cnv 4683 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 |
| This theorem is referenced by: xrlelttrd 9932 xrre 9942 xrre2 9943 iooss1 10038 iccssioo 10064 iccssico 10067 iocssioo 10085 ioossioo 10087 ico0 10404 bldisj 14873 xblm 14889 blsscls2 14965 metcnpi3 14989 |
| Copyright terms: Public domain | W3C validator |