ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrlelttr Unicode version

Theorem xrlelttr 9998
Description: Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
xrlelttr  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <_  B  /\  B  <  C )  ->  A  <  C
) )

Proof of Theorem xrlelttr
StepHypRef Expression
1 simprl 529 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  ->  A  <_  B )
2 simpl1 1024 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  ->  A  e.  RR* )
3 simpl2 1025 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  ->  B  e.  RR* )
4 xrlenlt 8207 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -.  B  <  A ) )
52, 3, 4syl2anc 411 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  -> 
( A  <_  B  <->  -.  B  <  A ) )
61, 5mpbid 147 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  ->  -.  B  <  A )
76pm2.21d 622 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  -> 
( B  <  A  ->  A  <  C ) )
8 idd 21 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  -> 
( A  <  C  ->  A  <  C ) )
9 simprr 531 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  ->  B  <  C )
10 simpl3 1026 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  ->  C  e.  RR* )
11 xrltso 9988 . . . . . 6  |-  <  Or  RR*
12 sowlin 4410 . . . . . 6  |-  ( (  <  Or  RR*  /\  ( B  e.  RR*  /\  C  e.  RR*  /\  A  e. 
RR* ) )  -> 
( B  <  C  ->  ( B  <  A  \/  A  <  C ) ) )
1311, 12mpan 424 . . . . 5  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  A  e. 
RR* )  ->  ( B  <  C  ->  ( B  <  A  \/  A  <  C ) ) )
143, 10, 2, 13syl3anc 1271 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  -> 
( B  <  C  ->  ( B  <  A  \/  A  <  C ) ) )
159, 14mpd 13 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  -> 
( B  <  A  \/  A  <  C ) )
167, 8, 15mpjaod 723 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <  C ) )  ->  A  <  C )
1716ex 115 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <_  B  /\  B  <  C )  ->  A  <  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    /\ w3a 1002    e. wcel 2200   class class class wbr 4082    Or wor 4385   RR*cxr 8176    < clt 8177    <_ cle 8178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-po 4386  df-iso 4387  df-xp 4724  df-cnv 4726  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183
This theorem is referenced by:  xrlelttrd  10002  xrre  10012  xrre2  10013  iooss1  10108  iccssioo  10134  iccssico  10137  iocssioo  10155  ioossioo  10157  ico0  10476  bldisj  15069  xblm  15085  blsscls2  15161  metcnpi3  15185
  Copyright terms: Public domain W3C validator