ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqval Unicode version

Theorem iseqf1olemqval 10436
Description: Lemma for seq3f1o 10453. Value of the function  Q. (Contributed by Jim Kingdon, 28-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqcl.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemqcl.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemqcl.a  |-  ( ph  ->  A  e.  ( M ... N ) )
iseqf1olemqval.q  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
Assertion
Ref Expression
iseqf1olemqval  |-  ( ph  ->  ( Q `  A
)  =  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K , 
( J `  ( A  -  1 ) ) ) ,  ( J `  A ) ) )
Distinct variable groups:    u, A    u, J    u, K    u, M    u, N
Allowed substitution hints:    ph( u)    Q( u)

Proof of Theorem iseqf1olemqval
StepHypRef Expression
1 iseqf1olemqcl.a . 2  |-  ( ph  ->  A  e.  ( M ... N ) )
2 iseqf1olemqcl.k . . 3  |-  ( ph  ->  K  e.  ( M ... N ) )
3 iseqf1olemqcl.j . . 3  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
42, 3, 1iseqf1olemqcl 10435 . 2  |-  ( ph  ->  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) ) ,  ( J `  A
) )  e.  ( M ... N ) )
5 eleq1 2233 . . . 4  |-  ( u  =  A  ->  (
u  e.  ( K ... ( `' J `  K ) )  <->  A  e.  ( K ... ( `' J `  K ) ) ) )
6 eqeq1 2177 . . . . 5  |-  ( u  =  A  ->  (
u  =  K  <->  A  =  K ) )
7 oveq1 5858 . . . . . 6  |-  ( u  =  A  ->  (
u  -  1 )  =  ( A  - 
1 ) )
87fveq2d 5498 . . . . 5  |-  ( u  =  A  ->  ( J `  ( u  -  1 ) )  =  ( J `  ( A  -  1
) ) )
96, 8ifbieq2d 3549 . . . 4  |-  ( u  =  A  ->  if ( u  =  K ,  K ,  ( J `
 ( u  - 
1 ) ) )  =  if ( A  =  K ,  K ,  ( J `  ( A  -  1
) ) ) )
10 fveq2 5494 . . . 4  |-  ( u  =  A  ->  ( J `  u )  =  ( J `  A ) )
115, 9, 10ifbieq12d 3551 . . 3  |-  ( u  =  A  ->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K , 
( J `  (
u  -  1 ) ) ) ,  ( J `  u ) )  =  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K , 
( J `  ( A  -  1 ) ) ) ,  ( J `  A ) ) )
12 iseqf1olemqval.q . . 3  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
1311, 12fvmptg 5570 . 2  |-  ( ( A  e.  ( M ... N )  /\  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) ) ,  ( J `  A
) )  e.  ( M ... N ) )  ->  ( Q `  A )  =  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) ) ,  ( J `  A
) ) )
141, 4, 13syl2anc 409 1  |-  ( ph  ->  ( Q `  A
)  =  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K , 
( J `  ( A  -  1 ) ) ) ,  ( J `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   ifcif 3525    |-> cmpt 4048   `'ccnv 4608   -1-1-onto->wf1o 5195   ` cfv 5196  (class class class)co 5851   1c1 7768    - cmin 8083   ...cfz 9958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-addcom 7867  ax-addass 7869  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-0id 7875  ax-rnegex 7876  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-ltadd 7883
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-inn 8872  df-n0 9129  df-z 9206  df-uz 9481  df-fz 9959
This theorem is referenced by:  iseqf1olemnab  10437  iseqf1olemab  10438  iseqf1olemnanb  10439  iseqf1olemqk  10443  seq3f1olemqsumkj  10447  seq3f1olemqsumk  10448
  Copyright terms: Public domain W3C validator