ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqval Unicode version

Theorem iseqf1olemqval 10291
Description: Lemma for seq3f1o 10308. Value of the function  Q. (Contributed by Jim Kingdon, 28-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqcl.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemqcl.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemqcl.a  |-  ( ph  ->  A  e.  ( M ... N ) )
iseqf1olemqval.q  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
Assertion
Ref Expression
iseqf1olemqval  |-  ( ph  ->  ( Q `  A
)  =  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K , 
( J `  ( A  -  1 ) ) ) ,  ( J `  A ) ) )
Distinct variable groups:    u, A    u, J    u, K    u, M    u, N
Allowed substitution hints:    ph( u)    Q( u)

Proof of Theorem iseqf1olemqval
StepHypRef Expression
1 iseqf1olemqcl.a . 2  |-  ( ph  ->  A  e.  ( M ... N ) )
2 iseqf1olemqcl.k . . 3  |-  ( ph  ->  K  e.  ( M ... N ) )
3 iseqf1olemqcl.j . . 3  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
42, 3, 1iseqf1olemqcl 10290 . 2  |-  ( ph  ->  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) ) ,  ( J `  A
) )  e.  ( M ... N ) )
5 eleq1 2203 . . . 4  |-  ( u  =  A  ->  (
u  e.  ( K ... ( `' J `  K ) )  <->  A  e.  ( K ... ( `' J `  K ) ) ) )
6 eqeq1 2147 . . . . 5  |-  ( u  =  A  ->  (
u  =  K  <->  A  =  K ) )
7 oveq1 5789 . . . . . 6  |-  ( u  =  A  ->  (
u  -  1 )  =  ( A  - 
1 ) )
87fveq2d 5433 . . . . 5  |-  ( u  =  A  ->  ( J `  ( u  -  1 ) )  =  ( J `  ( A  -  1
) ) )
96, 8ifbieq2d 3501 . . . 4  |-  ( u  =  A  ->  if ( u  =  K ,  K ,  ( J `
 ( u  - 
1 ) ) )  =  if ( A  =  K ,  K ,  ( J `  ( A  -  1
) ) ) )
10 fveq2 5429 . . . 4  |-  ( u  =  A  ->  ( J `  u )  =  ( J `  A ) )
115, 9, 10ifbieq12d 3503 . . 3  |-  ( u  =  A  ->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K , 
( J `  (
u  -  1 ) ) ) ,  ( J `  u ) )  =  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K , 
( J `  ( A  -  1 ) ) ) ,  ( J `  A ) ) )
12 iseqf1olemqval.q . . 3  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
1311, 12fvmptg 5505 . 2  |-  ( ( A  e.  ( M ... N )  /\  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) ) ,  ( J `  A
) )  e.  ( M ... N ) )  ->  ( Q `  A )  =  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) ) ,  ( J `  A
) ) )
141, 4, 13syl2anc 409 1  |-  ( ph  ->  ( Q `  A
)  =  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K , 
( J `  ( A  -  1 ) ) ) ,  ( J `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1332    e. wcel 1481   ifcif 3479    |-> cmpt 3997   `'ccnv 4546   -1-1-onto->wf1o 5130   ` cfv 5131  (class class class)co 5782   1c1 7645    - cmin 7957   ...cfz 9821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822
This theorem is referenced by:  iseqf1olemnab  10292  iseqf1olemab  10293  iseqf1olemnanb  10294  iseqf1olemqk  10298  seq3f1olemqsumkj  10302  seq3f1olemqsumk  10303
  Copyright terms: Public domain W3C validator