ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqval Unicode version

Theorem iseqf1olemqval 10609
Description: Lemma for seq3f1o 10626. Value of the function  Q. (Contributed by Jim Kingdon, 28-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqcl.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemqcl.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemqcl.a  |-  ( ph  ->  A  e.  ( M ... N ) )
iseqf1olemqval.q  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
Assertion
Ref Expression
iseqf1olemqval  |-  ( ph  ->  ( Q `  A
)  =  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K , 
( J `  ( A  -  1 ) ) ) ,  ( J `  A ) ) )
Distinct variable groups:    u, A    u, J    u, K    u, M    u, N
Allowed substitution hints:    ph( u)    Q( u)

Proof of Theorem iseqf1olemqval
StepHypRef Expression
1 iseqf1olemqcl.a . 2  |-  ( ph  ->  A  e.  ( M ... N ) )
2 iseqf1olemqcl.k . . 3  |-  ( ph  ->  K  e.  ( M ... N ) )
3 iseqf1olemqcl.j . . 3  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
42, 3, 1iseqf1olemqcl 10608 . 2  |-  ( ph  ->  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) ) ,  ( J `  A
) )  e.  ( M ... N ) )
5 eleq1 2259 . . . 4  |-  ( u  =  A  ->  (
u  e.  ( K ... ( `' J `  K ) )  <->  A  e.  ( K ... ( `' J `  K ) ) ) )
6 eqeq1 2203 . . . . 5  |-  ( u  =  A  ->  (
u  =  K  <->  A  =  K ) )
7 oveq1 5932 . . . . . 6  |-  ( u  =  A  ->  (
u  -  1 )  =  ( A  - 
1 ) )
87fveq2d 5565 . . . . 5  |-  ( u  =  A  ->  ( J `  ( u  -  1 ) )  =  ( J `  ( A  -  1
) ) )
96, 8ifbieq2d 3586 . . . 4  |-  ( u  =  A  ->  if ( u  =  K ,  K ,  ( J `
 ( u  - 
1 ) ) )  =  if ( A  =  K ,  K ,  ( J `  ( A  -  1
) ) ) )
10 fveq2 5561 . . . 4  |-  ( u  =  A  ->  ( J `  u )  =  ( J `  A ) )
115, 9, 10ifbieq12d 3588 . . 3  |-  ( u  =  A  ->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K , 
( J `  (
u  -  1 ) ) ) ,  ( J `  u ) )  =  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K , 
( J `  ( A  -  1 ) ) ) ,  ( J `  A ) ) )
12 iseqf1olemqval.q . . 3  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
1311, 12fvmptg 5640 . 2  |-  ( ( A  e.  ( M ... N )  /\  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) ) ,  ( J `  A
) )  e.  ( M ... N ) )  ->  ( Q `  A )  =  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) ) ,  ( J `  A
) ) )
141, 4, 13syl2anc 411 1  |-  ( ph  ->  ( Q `  A
)  =  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K , 
( J `  ( A  -  1 ) ) ) ,  ( J `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   ifcif 3562    |-> cmpt 4095   `'ccnv 4663   -1-1-onto->wf1o 5258   ` cfv 5259  (class class class)co 5925   1c1 7897    - cmin 8214   ...cfz 10100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101
This theorem is referenced by:  iseqf1olemnab  10610  iseqf1olemab  10611  iseqf1olemnanb  10612  iseqf1olemqk  10616  seq3f1olemqsumkj  10620  seq3f1olemqsumk  10621
  Copyright terms: Public domain W3C validator