ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqval Unicode version

Theorem iseqf1olemqval 10722
Description: Lemma for seq3f1o 10739. Value of the function  Q. (Contributed by Jim Kingdon, 28-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqcl.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemqcl.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemqcl.a  |-  ( ph  ->  A  e.  ( M ... N ) )
iseqf1olemqval.q  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
Assertion
Ref Expression
iseqf1olemqval  |-  ( ph  ->  ( Q `  A
)  =  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K , 
( J `  ( A  -  1 ) ) ) ,  ( J `  A ) ) )
Distinct variable groups:    u, A    u, J    u, K    u, M    u, N
Allowed substitution hints:    ph( u)    Q( u)

Proof of Theorem iseqf1olemqval
StepHypRef Expression
1 iseqf1olemqcl.a . 2  |-  ( ph  ->  A  e.  ( M ... N ) )
2 iseqf1olemqcl.k . . 3  |-  ( ph  ->  K  e.  ( M ... N ) )
3 iseqf1olemqcl.j . . 3  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
42, 3, 1iseqf1olemqcl 10721 . 2  |-  ( ph  ->  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) ) ,  ( J `  A
) )  e.  ( M ... N ) )
5 eleq1 2292 . . . 4  |-  ( u  =  A  ->  (
u  e.  ( K ... ( `' J `  K ) )  <->  A  e.  ( K ... ( `' J `  K ) ) ) )
6 eqeq1 2236 . . . . 5  |-  ( u  =  A  ->  (
u  =  K  <->  A  =  K ) )
7 oveq1 6008 . . . . . 6  |-  ( u  =  A  ->  (
u  -  1 )  =  ( A  - 
1 ) )
87fveq2d 5631 . . . . 5  |-  ( u  =  A  ->  ( J `  ( u  -  1 ) )  =  ( J `  ( A  -  1
) ) )
96, 8ifbieq2d 3627 . . . 4  |-  ( u  =  A  ->  if ( u  =  K ,  K ,  ( J `
 ( u  - 
1 ) ) )  =  if ( A  =  K ,  K ,  ( J `  ( A  -  1
) ) ) )
10 fveq2 5627 . . . 4  |-  ( u  =  A  ->  ( J `  u )  =  ( J `  A ) )
115, 9, 10ifbieq12d 3629 . . 3  |-  ( u  =  A  ->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K , 
( J `  (
u  -  1 ) ) ) ,  ( J `  u ) )  =  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K , 
( J `  ( A  -  1 ) ) ) ,  ( J `  A ) ) )
12 iseqf1olemqval.q . . 3  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
1311, 12fvmptg 5710 . 2  |-  ( ( A  e.  ( M ... N )  /\  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) ) ,  ( J `  A
) )  e.  ( M ... N ) )  ->  ( Q `  A )  =  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) ) ,  ( J `  A
) ) )
141, 4, 13syl2anc 411 1  |-  ( ph  ->  ( Q `  A
)  =  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K , 
( J `  ( A  -  1 ) ) ) ,  ( J `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   ifcif 3602    |-> cmpt 4145   `'ccnv 4718   -1-1-onto->wf1o 5317   ` cfv 5318  (class class class)co 6001   1c1 8000    - cmin 8317   ...cfz 10204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205
This theorem is referenced by:  iseqf1olemnab  10723  iseqf1olemab  10724  iseqf1olemnanb  10725  iseqf1olemqk  10729  seq3f1olemqsumkj  10733  seq3f1olemqsumk  10734
  Copyright terms: Public domain W3C validator