ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omp1eom Unicode version

Theorem omp1eom 7212
Description: Adding one to  om. (Contributed by Jim Kingdon, 10-Jul-2023.)
Assertion
Ref Expression
omp1eom  |-  ( om 1o )  ~~  om

Proof of Theorem omp1eom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 4649 . . 3  |-  om  e.  _V
2 eqeq1 2213 . . . . . 6  |-  ( y  =  x  ->  (
y  =  (/)  <->  x  =  (/) ) )
3 fveq2 5589 . . . . . 6  |-  ( y  =  x  ->  (inr `  y )  =  (inr
`  x ) )
4 unieq 3865 . . . . . . 7  |-  ( y  =  x  ->  U. y  =  U. x )
54fveq2d 5593 . . . . . 6  |-  ( y  =  x  ->  (inl ` 
U. y )  =  (inl `  U. x ) )
62, 3, 5ifbieq12d 3602 . . . . 5  |-  ( y  =  x  ->  if ( y  =  (/) ,  (inr `  y ) ,  (inl `  U. y ) )  =  if ( x  =  (/) ,  (inr
`  x ) ,  (inl `  U. x ) ) )
76cbvmptv 4148 . . . 4  |-  ( y  e.  om  |->  if ( y  =  (/) ,  (inr
`  y ) ,  (inl `  U. y ) ) )  =  ( x  e.  om  |->  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) )
8 suceq 4457 . . . . 5  |-  ( y  =  x  ->  suc  y  =  suc  x )
98cbvmptv 4148 . . . 4  |-  ( y  e.  om  |->  suc  y
)  =  ( x  e.  om  |->  suc  x
)
10 eqid 2206 . . . 4  |- case ( ( y  e.  om  |->  suc  y ) ,  (  _I  |`  1o )
)  = case ( ( y  e.  om  |->  suc  y ) ,  (  _I  |`  1o )
)
117, 9, 10omp1eomlem 7211 . . 3  |-  ( y  e.  om  |->  if ( y  =  (/) ,  (inr
`  y ) ,  (inl `  U. y ) ) ) : om -1-1-onto-> ( om 1o )
12 f1oeng 6861 . . 3  |-  ( ( om  e.  _V  /\  ( y  e.  om  |->  if ( y  =  (/) ,  (inr `  y ) ,  (inl `  U. y ) ) ) : om -1-1-onto-> ( om 1o ) )  ->  om  ~~  ( om 1o ) )
131, 11, 12mp2an 426 . 2  |-  om  ~~  ( om 1o )
1413ensymi 6887 1  |-  ( om 1o )  ~~  om
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2177   _Vcvv 2773   (/)c0 3464   ifcif 3575   U.cuni 3856   class class class wbr 4051    |-> cmpt 4113    _I cid 4343   suc csuc 4420   omcom 4646    |` cres 4685   -1-1-onto->wf1o 5279   ` cfv 5280   1oc1o 6508    ~~ cen 6838   ⊔ cdju 7154  inlcinl 7162  inrcinr 7163  casecdjucase 7200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-1st 6239  df-2nd 6240  df-1o 6515  df-er 6633  df-en 6841  df-dju 7155  df-inl 7164  df-inr 7165  df-case 7201
This theorem is referenced by:  difinfsn  7217  sbthom  16106
  Copyright terms: Public domain W3C validator