ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omp1eom Unicode version

Theorem omp1eom 7060
Description: Adding one to  om. (Contributed by Jim Kingdon, 10-Jul-2023.)
Assertion
Ref Expression
omp1eom  |-  ( om 1o )  ~~  om

Proof of Theorem omp1eom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 4570 . . 3  |-  om  e.  _V
2 eqeq1 2172 . . . . . 6  |-  ( y  =  x  ->  (
y  =  (/)  <->  x  =  (/) ) )
3 fveq2 5486 . . . . . 6  |-  ( y  =  x  ->  (inr `  y )  =  (inr
`  x ) )
4 unieq 3798 . . . . . . 7  |-  ( y  =  x  ->  U. y  =  U. x )
54fveq2d 5490 . . . . . 6  |-  ( y  =  x  ->  (inl ` 
U. y )  =  (inl `  U. x ) )
62, 3, 5ifbieq12d 3546 . . . . 5  |-  ( y  =  x  ->  if ( y  =  (/) ,  (inr `  y ) ,  (inl `  U. y ) )  =  if ( x  =  (/) ,  (inr
`  x ) ,  (inl `  U. x ) ) )
76cbvmptv 4078 . . . 4  |-  ( y  e.  om  |->  if ( y  =  (/) ,  (inr
`  y ) ,  (inl `  U. y ) ) )  =  ( x  e.  om  |->  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) )
8 suceq 4380 . . . . 5  |-  ( y  =  x  ->  suc  y  =  suc  x )
98cbvmptv 4078 . . . 4  |-  ( y  e.  om  |->  suc  y
)  =  ( x  e.  om  |->  suc  x
)
10 eqid 2165 . . . 4  |- case ( ( y  e.  om  |->  suc  y ) ,  (  _I  |`  1o )
)  = case ( ( y  e.  om  |->  suc  y ) ,  (  _I  |`  1o )
)
117, 9, 10omp1eomlem 7059 . . 3  |-  ( y  e.  om  |->  if ( y  =  (/) ,  (inr
`  y ) ,  (inl `  U. y ) ) ) : om -1-1-onto-> ( om 1o )
12 f1oeng 6723 . . 3  |-  ( ( om  e.  _V  /\  ( y  e.  om  |->  if ( y  =  (/) ,  (inr `  y ) ,  (inl `  U. y ) ) ) : om -1-1-onto-> ( om 1o ) )  ->  om  ~~  ( om 1o ) )
131, 11, 12mp2an 423 . 2  |-  om  ~~  ( om 1o )
1413ensymi 6748 1  |-  ( om 1o )  ~~  om
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136   _Vcvv 2726   (/)c0 3409   ifcif 3520   U.cuni 3789   class class class wbr 3982    |-> cmpt 4043    _I cid 4266   suc csuc 4343   omcom 4567    |` cres 4606   -1-1-onto->wf1o 5187   ` cfv 5188   1oc1o 6377    ~~ cen 6704   ⊔ cdju 7002  inlcinl 7010  inrcinr 7011  casecdjucase 7048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-1o 6384  df-er 6501  df-en 6707  df-dju 7003  df-inl 7012  df-inr 7013  df-case 7049
This theorem is referenced by:  difinfsn  7065  sbthom  13905
  Copyright terms: Public domain W3C validator