ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omp1eom Unicode version

Theorem omp1eom 7170
Description: Adding one to  om. (Contributed by Jim Kingdon, 10-Jul-2023.)
Assertion
Ref Expression
omp1eom  |-  ( om 1o )  ~~  om

Proof of Theorem omp1eom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 4630 . . 3  |-  om  e.  _V
2 eqeq1 2203 . . . . . 6  |-  ( y  =  x  ->  (
y  =  (/)  <->  x  =  (/) ) )
3 fveq2 5561 . . . . . 6  |-  ( y  =  x  ->  (inr `  y )  =  (inr
`  x ) )
4 unieq 3849 . . . . . . 7  |-  ( y  =  x  ->  U. y  =  U. x )
54fveq2d 5565 . . . . . 6  |-  ( y  =  x  ->  (inl ` 
U. y )  =  (inl `  U. x ) )
62, 3, 5ifbieq12d 3588 . . . . 5  |-  ( y  =  x  ->  if ( y  =  (/) ,  (inr `  y ) ,  (inl `  U. y ) )  =  if ( x  =  (/) ,  (inr
`  x ) ,  (inl `  U. x ) ) )
76cbvmptv 4130 . . . 4  |-  ( y  e.  om  |->  if ( y  =  (/) ,  (inr
`  y ) ,  (inl `  U. y ) ) )  =  ( x  e.  om  |->  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) )
8 suceq 4438 . . . . 5  |-  ( y  =  x  ->  suc  y  =  suc  x )
98cbvmptv 4130 . . . 4  |-  ( y  e.  om  |->  suc  y
)  =  ( x  e.  om  |->  suc  x
)
10 eqid 2196 . . . 4  |- case ( ( y  e.  om  |->  suc  y ) ,  (  _I  |`  1o )
)  = case ( ( y  e.  om  |->  suc  y ) ,  (  _I  |`  1o )
)
117, 9, 10omp1eomlem 7169 . . 3  |-  ( y  e.  om  |->  if ( y  =  (/) ,  (inr
`  y ) ,  (inl `  U. y ) ) ) : om -1-1-onto-> ( om 1o )
12 f1oeng 6825 . . 3  |-  ( ( om  e.  _V  /\  ( y  e.  om  |->  if ( y  =  (/) ,  (inr `  y ) ,  (inl `  U. y ) ) ) : om -1-1-onto-> ( om 1o ) )  ->  om  ~~  ( om 1o ) )
131, 11, 12mp2an 426 . 2  |-  om  ~~  ( om 1o )
1413ensymi 6850 1  |-  ( om 1o )  ~~  om
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167   _Vcvv 2763   (/)c0 3451   ifcif 3562   U.cuni 3840   class class class wbr 4034    |-> cmpt 4095    _I cid 4324   suc csuc 4401   omcom 4627    |` cres 4666   -1-1-onto->wf1o 5258   ` cfv 5259   1oc1o 6476    ~~ cen 6806   ⊔ cdju 7112  inlcinl 7120  inrcinr 7121  casecdjucase 7158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-1st 6207  df-2nd 6208  df-1o 6483  df-er 6601  df-en 6809  df-dju 7113  df-inl 7122  df-inr 7123  df-case 7159
This theorem is referenced by:  difinfsn  7175  sbthom  15757
  Copyright terms: Public domain W3C validator