ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omp1eom Unicode version

Theorem omp1eom 7258
Description: Adding one to  om. (Contributed by Jim Kingdon, 10-Jul-2023.)
Assertion
Ref Expression
omp1eom  |-  ( om 1o )  ~~  om

Proof of Theorem omp1eom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 4684 . . 3  |-  om  e.  _V
2 eqeq1 2236 . . . . . 6  |-  ( y  =  x  ->  (
y  =  (/)  <->  x  =  (/) ) )
3 fveq2 5626 . . . . . 6  |-  ( y  =  x  ->  (inr `  y )  =  (inr
`  x ) )
4 unieq 3896 . . . . . . 7  |-  ( y  =  x  ->  U. y  =  U. x )
54fveq2d 5630 . . . . . 6  |-  ( y  =  x  ->  (inl ` 
U. y )  =  (inl `  U. x ) )
62, 3, 5ifbieq12d 3629 . . . . 5  |-  ( y  =  x  ->  if ( y  =  (/) ,  (inr `  y ) ,  (inl `  U. y ) )  =  if ( x  =  (/) ,  (inr
`  x ) ,  (inl `  U. x ) ) )
76cbvmptv 4179 . . . 4  |-  ( y  e.  om  |->  if ( y  =  (/) ,  (inr
`  y ) ,  (inl `  U. y ) ) )  =  ( x  e.  om  |->  if ( x  =  (/) ,  (inr `  x ) ,  (inl `  U. x ) ) )
8 suceq 4492 . . . . 5  |-  ( y  =  x  ->  suc  y  =  suc  x )
98cbvmptv 4179 . . . 4  |-  ( y  e.  om  |->  suc  y
)  =  ( x  e.  om  |->  suc  x
)
10 eqid 2229 . . . 4  |- case ( ( y  e.  om  |->  suc  y ) ,  (  _I  |`  1o )
)  = case ( ( y  e.  om  |->  suc  y ) ,  (  _I  |`  1o )
)
117, 9, 10omp1eomlem 7257 . . 3  |-  ( y  e.  om  |->  if ( y  =  (/) ,  (inr
`  y ) ,  (inl `  U. y ) ) ) : om -1-1-onto-> ( om 1o )
12 f1oeng 6906 . . 3  |-  ( ( om  e.  _V  /\  ( y  e.  om  |->  if ( y  =  (/) ,  (inr `  y ) ,  (inl `  U. y ) ) ) : om -1-1-onto-> ( om 1o ) )  ->  om  ~~  ( om 1o ) )
131, 11, 12mp2an 426 . 2  |-  om  ~~  ( om 1o )
1413ensymi 6932 1  |-  ( om 1o )  ~~  om
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200   _Vcvv 2799   (/)c0 3491   ifcif 3602   U.cuni 3887   class class class wbr 4082    |-> cmpt 4144    _I cid 4378   suc csuc 4455   omcom 4681    |` cres 4720   -1-1-onto->wf1o 5316   ` cfv 5317   1oc1o 6553    ~~ cen 6883   ⊔ cdju 7200  inlcinl 7208  inrcinr 7209  casecdjucase 7246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1st 6284  df-2nd 6285  df-1o 6560  df-er 6678  df-en 6886  df-dju 7201  df-inl 7210  df-inr 7211  df-case 7247
This theorem is referenced by:  difinfsn  7263  sbthom  16353
  Copyright terms: Public domain W3C validator