ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalgval2 Unicode version

Theorem eucalgval2 11646
Description: The value of the step function  E for Euclid's Algorithm on an ordered pair. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)
Hypothesis
Ref Expression
eucalgval.1  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
Assertion
Ref Expression
eucalgval2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M E N )  =  if ( N  =  0 , 
<. M ,  N >. , 
<. N ,  ( M  mod  N ) >.
) )
Distinct variable groups:    x, y, M   
x, N, y
Allowed substitution hints:    E( x, y)

Proof of Theorem eucalgval2
StepHypRef Expression
1 opexg 4120 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  <. M ,  N >.  e. 
_V )
21adantr 274 . . 3  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  =  0
)  ->  <. M ,  N >.  e.  _V )
3 simpr 109 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  NN0 )
43adantr 274 . . . 4  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  N  e.  NN0 )
5 simpl 108 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  NN0 )
65nn0zd 9129 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  ZZ )
76adantr 274 . . . . 5  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  M  e.  ZZ )
8 simpr 109 . . . . . . 7  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  -.  N  =  0 )
98neqned 2292 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  N  =/=  0 )
10 elnnne0 8949 . . . . . 6  |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  N  =/=  0 ) )
114, 9, 10sylanbrc 413 . . . . 5  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  N  e.  NN )
127, 11zmodcld 10073 . . . 4  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  ( M  mod  N )  e.  NN0 )
13 opexg 4120 . . . 4  |-  ( ( N  e.  NN0  /\  ( M  mod  N )  e.  NN0 )  ->  <. N ,  ( M  mod  N ) >.  e.  _V )
144, 12, 13syl2anc 408 . . 3  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  <. N , 
( M  mod  N
) >.  e.  _V )
153nn0zd 9129 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  ZZ )
16 0zd 9024 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
0  e.  ZZ )
17 zdceq 9084 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
1815, 16, 17syl2anc 408 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> DECID  N  =  0 )
192, 14, 18ifcldadc 3471 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  if ( N  =  0 ,  <. M ,  N >. ,  <. N ,  ( M  mod  N )
>. )  e.  _V )
20 simpr 109 . . . . 5  |-  ( ( x  =  M  /\  y  =  N )  ->  y  =  N )
2120eqeq1d 2126 . . . 4  |-  ( ( x  =  M  /\  y  =  N )  ->  ( y  =  0  <-> 
N  =  0 ) )
22 opeq12 3677 . . . 4  |-  ( ( x  =  M  /\  y  =  N )  -> 
<. x ,  y >.  =  <. M ,  N >. )
23 oveq12 5751 . . . . 5  |-  ( ( x  =  M  /\  y  =  N )  ->  ( x  mod  y
)  =  ( M  mod  N ) )
2420, 23opeq12d 3683 . . . 4  |-  ( ( x  =  M  /\  y  =  N )  -> 
<. y ,  ( x  mod  y ) >.  =  <. N ,  ( M  mod  N )
>. )
2521, 22, 24ifbieq12d 3468 . . 3  |-  ( ( x  =  M  /\  y  =  N )  ->  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  =  if ( N  =  0 ,  <. M ,  N >. ,  <. N , 
( M  mod  N
) >. ) )
26 eucalgval.1 . . 3  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
2725, 26ovmpoga 5868 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  if ( N  =  0 ,  <. M ,  N >. ,  <. N ,  ( M  mod  N )
>. )  e.  _V )  ->  ( M E N )  =  if ( N  =  0 ,  <. M ,  N >. ,  <. N ,  ( M  mod  N )
>. ) )
2819, 27mpd3an3 1301 1  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M E N )  =  if ( N  =  0 , 
<. M ,  N >. , 
<. N ,  ( M  mod  N ) >.
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103  DECID wdc 804    = wceq 1316    e. wcel 1465    =/= wne 2285   _Vcvv 2660   ifcif 3444   <.cop 3500  (class class class)co 5742    e. cmpo 5744   0cc0 7588   NNcn 8684   NN0cn0 8935   ZZcz 9012    mod cmo 10050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-po 4188  df-iso 4189  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8304  df-ap 8311  df-div 8400  df-inn 8685  df-n0 8936  df-z 9013  df-q 9368  df-rp 9398  df-fl 9998  df-mod 10051
This theorem is referenced by:  eucalgval  11647
  Copyright terms: Public domain W3C validator