| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eucalgval2 | Unicode version | ||
| Description: The value of the step
function |
| Ref | Expression |
|---|---|
| eucalgval.1 |
|
| Ref | Expression |
|---|---|
| eucalgval2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opexg 4285 |
. . . 4
| |
| 2 | 1 | adantr 276 |
. . 3
|
| 3 | simpr 110 |
. . . . 5
| |
| 4 | 3 | adantr 276 |
. . . 4
|
| 5 | simpl 109 |
. . . . . . 7
| |
| 6 | 5 | nn0zd 9523 |
. . . . . 6
|
| 7 | 6 | adantr 276 |
. . . . 5
|
| 8 | simpr 110 |
. . . . . . 7
| |
| 9 | 8 | neqned 2384 |
. . . . . 6
|
| 10 | elnnne0 9339 |
. . . . . 6
| |
| 11 | 4, 9, 10 | sylanbrc 417 |
. . . . 5
|
| 12 | 7, 11 | zmodcld 10522 |
. . . 4
|
| 13 | opexg 4285 |
. . . 4
| |
| 14 | 4, 12, 13 | syl2anc 411 |
. . 3
|
| 15 | 3 | nn0zd 9523 |
. . . 4
|
| 16 | 0zd 9414 |
. . . 4
| |
| 17 | zdceq 9478 |
. . . 4
| |
| 18 | 15, 16, 17 | syl2anc 411 |
. . 3
|
| 19 | 2, 14, 18 | ifcldadc 3605 |
. 2
|
| 20 | simpr 110 |
. . . . 5
| |
| 21 | 20 | eqeq1d 2215 |
. . . 4
|
| 22 | opeq12 3830 |
. . . 4
| |
| 23 | oveq12 5971 |
. . . . 5
| |
| 24 | 20, 23 | opeq12d 3836 |
. . . 4
|
| 25 | 21, 22, 24 | ifbieq12d 3602 |
. . 3
|
| 26 | eucalgval.1 |
. . 3
| |
| 27 | 25, 26 | ovmpoga 6093 |
. 2
|
| 28 | 19, 27 | mpd3an3 1351 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 ax-arch 8074 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-po 4356 df-iso 4357 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 df-inn 9067 df-n0 9326 df-z 9403 df-q 9771 df-rp 9806 df-fl 10445 df-mod 10500 |
| This theorem is referenced by: eucalgval 12461 |
| Copyright terms: Public domain | W3C validator |