ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalgval2 Unicode version

Theorem eucalgval2 12194
Description: The value of the step function  E for Euclid's Algorithm on an ordered pair. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)
Hypothesis
Ref Expression
eucalgval.1  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
Assertion
Ref Expression
eucalgval2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M E N )  =  if ( N  =  0 , 
<. M ,  N >. , 
<. N ,  ( M  mod  N ) >.
) )
Distinct variable groups:    x, y, M   
x, N, y
Allowed substitution hints:    E( x, y)

Proof of Theorem eucalgval2
StepHypRef Expression
1 opexg 4258 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  <. M ,  N >.  e. 
_V )
21adantr 276 . . 3  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  =  0
)  ->  <. M ,  N >.  e.  _V )
3 simpr 110 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  NN0 )
43adantr 276 . . . 4  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  N  e.  NN0 )
5 simpl 109 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  NN0 )
65nn0zd 9440 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  ZZ )
76adantr 276 . . . . 5  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  M  e.  ZZ )
8 simpr 110 . . . . . . 7  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  -.  N  =  0 )
98neqned 2371 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  N  =/=  0 )
10 elnnne0 9257 . . . . . 6  |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  N  =/=  0 ) )
114, 9, 10sylanbrc 417 . . . . 5  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  N  e.  NN )
127, 11zmodcld 10419 . . . 4  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  ( M  mod  N )  e.  NN0 )
13 opexg 4258 . . . 4  |-  ( ( N  e.  NN0  /\  ( M  mod  N )  e.  NN0 )  ->  <. N ,  ( M  mod  N ) >.  e.  _V )
144, 12, 13syl2anc 411 . . 3  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  <. N , 
( M  mod  N
) >.  e.  _V )
153nn0zd 9440 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  ZZ )
16 0zd 9332 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
0  e.  ZZ )
17 zdceq 9395 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
1815, 16, 17syl2anc 411 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> DECID  N  =  0 )
192, 14, 18ifcldadc 3587 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  if ( N  =  0 ,  <. M ,  N >. ,  <. N ,  ( M  mod  N )
>. )  e.  _V )
20 simpr 110 . . . . 5  |-  ( ( x  =  M  /\  y  =  N )  ->  y  =  N )
2120eqeq1d 2202 . . . 4  |-  ( ( x  =  M  /\  y  =  N )  ->  ( y  =  0  <-> 
N  =  0 ) )
22 opeq12 3807 . . . 4  |-  ( ( x  =  M  /\  y  =  N )  -> 
<. x ,  y >.  =  <. M ,  N >. )
23 oveq12 5928 . . . . 5  |-  ( ( x  =  M  /\  y  =  N )  ->  ( x  mod  y
)  =  ( M  mod  N ) )
2420, 23opeq12d 3813 . . . 4  |-  ( ( x  =  M  /\  y  =  N )  -> 
<. y ,  ( x  mod  y ) >.  =  <. N ,  ( M  mod  N )
>. )
2521, 22, 24ifbieq12d 3584 . . 3  |-  ( ( x  =  M  /\  y  =  N )  ->  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  =  if ( N  =  0 ,  <. M ,  N >. ,  <. N , 
( M  mod  N
) >. ) )
26 eucalgval.1 . . 3  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
2725, 26ovmpoga 6049 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  if ( N  =  0 ,  <. M ,  N >. ,  <. N ,  ( M  mod  N )
>. )  e.  _V )  ->  ( M E N )  =  if ( N  =  0 ,  <. M ,  N >. ,  <. N ,  ( M  mod  N )
>. ) )
2819, 27mpd3an3 1349 1  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M E N )  =  if ( N  =  0 , 
<. M ,  N >. , 
<. N ,  ( M  mod  N ) >.
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 835    = wceq 1364    e. wcel 2164    =/= wne 2364   _Vcvv 2760   ifcif 3558   <.cop 3622  (class class class)co 5919    e. cmpo 5921   0cc0 7874   NNcn 8984   NN0cn0 9243   ZZcz 9320    mod cmo 10396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-n0 9244  df-z 9321  df-q 9688  df-rp 9723  df-fl 10342  df-mod 10397
This theorem is referenced by:  eucalgval  12195
  Copyright terms: Public domain W3C validator