ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalgval2 Unicode version

Theorem eucalgval2 12047
Description: The value of the step function  E for Euclid's Algorithm on an ordered pair. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)
Hypothesis
Ref Expression
eucalgval.1  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
Assertion
Ref Expression
eucalgval2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M E N )  =  if ( N  =  0 , 
<. M ,  N >. , 
<. N ,  ( M  mod  N ) >.
) )
Distinct variable groups:    x, y, M   
x, N, y
Allowed substitution hints:    E( x, y)

Proof of Theorem eucalgval2
StepHypRef Expression
1 opexg 4228 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  <. M ,  N >.  e. 
_V )
21adantr 276 . . 3  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  =  0
)  ->  <. M ,  N >.  e.  _V )
3 simpr 110 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  NN0 )
43adantr 276 . . . 4  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  N  e.  NN0 )
5 simpl 109 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  NN0 )
65nn0zd 9371 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  ZZ )
76adantr 276 . . . . 5  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  M  e.  ZZ )
8 simpr 110 . . . . . . 7  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  -.  N  =  0 )
98neqned 2354 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  N  =/=  0 )
10 elnnne0 9188 . . . . . 6  |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  N  =/=  0 ) )
114, 9, 10sylanbrc 417 . . . . 5  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  N  e.  NN )
127, 11zmodcld 10342 . . . 4  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  ( M  mod  N )  e.  NN0 )
13 opexg 4228 . . . 4  |-  ( ( N  e.  NN0  /\  ( M  mod  N )  e.  NN0 )  ->  <. N ,  ( M  mod  N ) >.  e.  _V )
144, 12, 13syl2anc 411 . . 3  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  <. N , 
( M  mod  N
) >.  e.  _V )
153nn0zd 9371 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  ZZ )
16 0zd 9263 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
0  e.  ZZ )
17 zdceq 9326 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
1815, 16, 17syl2anc 411 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> DECID  N  =  0 )
192, 14, 18ifcldadc 3563 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  if ( N  =  0 ,  <. M ,  N >. ,  <. N ,  ( M  mod  N )
>. )  e.  _V )
20 simpr 110 . . . . 5  |-  ( ( x  =  M  /\  y  =  N )  ->  y  =  N )
2120eqeq1d 2186 . . . 4  |-  ( ( x  =  M  /\  y  =  N )  ->  ( y  =  0  <-> 
N  =  0 ) )
22 opeq12 3780 . . . 4  |-  ( ( x  =  M  /\  y  =  N )  -> 
<. x ,  y >.  =  <. M ,  N >. )
23 oveq12 5883 . . . . 5  |-  ( ( x  =  M  /\  y  =  N )  ->  ( x  mod  y
)  =  ( M  mod  N ) )
2420, 23opeq12d 3786 . . . 4  |-  ( ( x  =  M  /\  y  =  N )  -> 
<. y ,  ( x  mod  y ) >.  =  <. N ,  ( M  mod  N )
>. )
2521, 22, 24ifbieq12d 3560 . . 3  |-  ( ( x  =  M  /\  y  =  N )  ->  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  =  if ( N  =  0 ,  <. M ,  N >. ,  <. N , 
( M  mod  N
) >. ) )
26 eucalgval.1 . . 3  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
2725, 26ovmpoga 6003 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  if ( N  =  0 ,  <. M ,  N >. ,  <. N ,  ( M  mod  N )
>. )  e.  _V )  ->  ( M E N )  =  if ( N  =  0 ,  <. M ,  N >. ,  <. N ,  ( M  mod  N )
>. ) )
2819, 27mpd3an3 1338 1  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M E N )  =  if ( N  =  0 , 
<. M ,  N >. , 
<. N ,  ( M  mod  N ) >.
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 834    = wceq 1353    e. wcel 2148    =/= wne 2347   _Vcvv 2737   ifcif 3534   <.cop 3595  (class class class)co 5874    e. cmpo 5876   0cc0 7810   NNcn 8917   NN0cn0 9174   ZZcz 9251    mod cmo 10319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-po 4296  df-iso 4297  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-reap 8530  df-ap 8537  df-div 8628  df-inn 8918  df-n0 9175  df-z 9252  df-q 9618  df-rp 9652  df-fl 10267  df-mod 10320
This theorem is referenced by:  eucalgval  12048
  Copyright terms: Public domain W3C validator