ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalgval2 Unicode version

Theorem eucalgval2 12460
Description: The value of the step function  E for Euclid's Algorithm on an ordered pair. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)
Hypothesis
Ref Expression
eucalgval.1  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
Assertion
Ref Expression
eucalgval2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M E N )  =  if ( N  =  0 , 
<. M ,  N >. , 
<. N ,  ( M  mod  N ) >.
) )
Distinct variable groups:    x, y, M   
x, N, y
Allowed substitution hints:    E( x, y)

Proof of Theorem eucalgval2
StepHypRef Expression
1 opexg 4285 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  <. M ,  N >.  e. 
_V )
21adantr 276 . . 3  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  =  0
)  ->  <. M ,  N >.  e.  _V )
3 simpr 110 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  NN0 )
43adantr 276 . . . 4  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  N  e.  NN0 )
5 simpl 109 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  NN0 )
65nn0zd 9523 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  ZZ )
76adantr 276 . . . . 5  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  M  e.  ZZ )
8 simpr 110 . . . . . . 7  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  -.  N  =  0 )
98neqned 2384 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  N  =/=  0 )
10 elnnne0 9339 . . . . . 6  |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  N  =/=  0 ) )
114, 9, 10sylanbrc 417 . . . . 5  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  N  e.  NN )
127, 11zmodcld 10522 . . . 4  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  ( M  mod  N )  e.  NN0 )
13 opexg 4285 . . . 4  |-  ( ( N  e.  NN0  /\  ( M  mod  N )  e.  NN0 )  ->  <. N ,  ( M  mod  N ) >.  e.  _V )
144, 12, 13syl2anc 411 . . 3  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  <. N , 
( M  mod  N
) >.  e.  _V )
153nn0zd 9523 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  ZZ )
16 0zd 9414 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
0  e.  ZZ )
17 zdceq 9478 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
1815, 16, 17syl2anc 411 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> DECID  N  =  0 )
192, 14, 18ifcldadc 3605 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  if ( N  =  0 ,  <. M ,  N >. ,  <. N ,  ( M  mod  N )
>. )  e.  _V )
20 simpr 110 . . . . 5  |-  ( ( x  =  M  /\  y  =  N )  ->  y  =  N )
2120eqeq1d 2215 . . . 4  |-  ( ( x  =  M  /\  y  =  N )  ->  ( y  =  0  <-> 
N  =  0 ) )
22 opeq12 3830 . . . 4  |-  ( ( x  =  M  /\  y  =  N )  -> 
<. x ,  y >.  =  <. M ,  N >. )
23 oveq12 5971 . . . . 5  |-  ( ( x  =  M  /\  y  =  N )  ->  ( x  mod  y
)  =  ( M  mod  N ) )
2420, 23opeq12d 3836 . . . 4  |-  ( ( x  =  M  /\  y  =  N )  -> 
<. y ,  ( x  mod  y ) >.  =  <. N ,  ( M  mod  N )
>. )
2521, 22, 24ifbieq12d 3602 . . 3  |-  ( ( x  =  M  /\  y  =  N )  ->  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  =  if ( N  =  0 ,  <. M ,  N >. ,  <. N , 
( M  mod  N
) >. ) )
26 eucalgval.1 . . 3  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
2725, 26ovmpoga 6093 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  if ( N  =  0 ,  <. M ,  N >. ,  <. N ,  ( M  mod  N )
>. )  e.  _V )  ->  ( M E N )  =  if ( N  =  0 ,  <. M ,  N >. ,  <. N ,  ( M  mod  N )
>. ) )
2819, 27mpd3an3 1351 1  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M E N )  =  if ( N  =  0 , 
<. M ,  N >. , 
<. N ,  ( M  mod  N ) >.
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 836    = wceq 1373    e. wcel 2177    =/= wne 2377   _Vcvv 2773   ifcif 3575   <.cop 3641  (class class class)co 5962    e. cmpo 5964   0cc0 7955   NNcn 9066   NN0cn0 9325   ZZcz 9402    mod cmo 10499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073  ax-arch 8074
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-po 4356  df-iso 4357  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-n0 9326  df-z 9403  df-q 9771  df-rp 9806  df-fl 10445  df-mod 10500
This theorem is referenced by:  eucalgval  12461
  Copyright terms: Public domain W3C validator