ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalgval2 Unicode version

Theorem eucalgval2 11527
Description: The value of the step function  E for Euclid's Algorithm on an ordered pair. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)
Hypothesis
Ref Expression
eucalgval.1  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
Assertion
Ref Expression
eucalgval2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M E N )  =  if ( N  =  0 , 
<. M ,  N >. , 
<. N ,  ( M  mod  N ) >.
) )
Distinct variable groups:    x, y, M   
x, N, y
Allowed substitution hints:    E( x, y)

Proof of Theorem eucalgval2
StepHypRef Expression
1 opexg 4088 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  <. M ,  N >.  e. 
_V )
21adantr 272 . . 3  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  =  0
)  ->  <. M ,  N >.  e.  _V )
3 simpr 109 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  NN0 )
43adantr 272 . . . 4  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  N  e.  NN0 )
5 simpl 108 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  NN0 )
65nn0zd 9023 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  ZZ )
76adantr 272 . . . . 5  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  M  e.  ZZ )
8 simpr 109 . . . . . . 7  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  -.  N  =  0 )
98neqned 2274 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  N  =/=  0 )
10 elnnne0 8843 . . . . . 6  |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  N  =/=  0 ) )
114, 9, 10sylanbrc 411 . . . . 5  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  N  e.  NN )
127, 11zmodcld 9959 . . . 4  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  ( M  mod  N )  e.  NN0 )
13 opexg 4088 . . . 4  |-  ( ( N  e.  NN0  /\  ( M  mod  N )  e.  NN0 )  ->  <. N ,  ( M  mod  N ) >.  e.  _V )
144, 12, 13syl2anc 406 . . 3  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  -.  N  =  0 )  ->  <. N , 
( M  mod  N
) >.  e.  _V )
153nn0zd 9023 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  ZZ )
16 0zd 8918 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
0  e.  ZZ )
17 zdceq 8978 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
1815, 16, 17syl2anc 406 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> DECID  N  =  0 )
192, 14, 18ifcldadc 3448 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  if ( N  =  0 ,  <. M ,  N >. ,  <. N ,  ( M  mod  N )
>. )  e.  _V )
20 simpr 109 . . . . 5  |-  ( ( x  =  M  /\  y  =  N )  ->  y  =  N )
2120eqeq1d 2108 . . . 4  |-  ( ( x  =  M  /\  y  =  N )  ->  ( y  =  0  <-> 
N  =  0 ) )
22 opeq12 3654 . . . 4  |-  ( ( x  =  M  /\  y  =  N )  -> 
<. x ,  y >.  =  <. M ,  N >. )
23 oveq12 5715 . . . . 5  |-  ( ( x  =  M  /\  y  =  N )  ->  ( x  mod  y
)  =  ( M  mod  N ) )
2420, 23opeq12d 3660 . . . 4  |-  ( ( x  =  M  /\  y  =  N )  -> 
<. y ,  ( x  mod  y ) >.  =  <. N ,  ( M  mod  N )
>. )
2521, 22, 24ifbieq12d 3445 . . 3  |-  ( ( x  =  M  /\  y  =  N )  ->  if ( y  =  0 ,  <. x ,  y >. ,  <. y ,  ( x  mod  y ) >. )  =  if ( N  =  0 ,  <. M ,  N >. ,  <. N , 
( M  mod  N
) >. ) )
26 eucalgval.1 . . 3  |-  E  =  ( x  e.  NN0 ,  y  e.  NN0  |->  if ( y  =  0 , 
<. x ,  y >. ,  <. y ,  ( x  mod  y )
>. ) )
2725, 26ovmpoga 5832 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  if ( N  =  0 ,  <. M ,  N >. ,  <. N ,  ( M  mod  N )
>. )  e.  _V )  ->  ( M E N )  =  if ( N  =  0 ,  <. M ,  N >. ,  <. N ,  ( M  mod  N )
>. ) )
2819, 27mpd3an3 1284 1  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M E N )  =  if ( N  =  0 , 
<. M ,  N >. , 
<. N ,  ( M  mod  N ) >.
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103  DECID wdc 786    = wceq 1299    e. wcel 1448    =/= wne 2267   _Vcvv 2641   ifcif 3421   <.cop 3477  (class class class)co 5706    e. cmpo 5708   0cc0 7500   NNcn 8578   NN0cn0 8829   ZZcz 8906    mod cmo 9936
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613  ax-arch 7614
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-po 4156  df-iso 4157  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-n0 8830  df-z 8907  df-q 9262  df-rp 9292  df-fl 9884  df-mod 9937
This theorem is referenced by:  eucalgval  11528
  Copyright terms: Public domain W3C validator