ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfaddmnf Unicode version

Theorem pnfaddmnf 9925
Description: Addition of positive and negative infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
pnfaddmnf  |-  ( +oo +e -oo )  =  0

Proof of Theorem pnfaddmnf
StepHypRef Expression
1 pnfxr 8079 . . 3  |- +oo  e.  RR*
2 mnfxr 8083 . . 3  |- -oo  e.  RR*
3 xaddval 9920 . . 3  |-  ( ( +oo  e.  RR*  /\ -oo  e.  RR* )  ->  ( +oo +e -oo )  =  if ( +oo  = +oo ,  if ( -oo  = -oo ,  0 , +oo ) ,  if ( +oo  = -oo ,  if ( -oo  = +oo ,  0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( +oo  + -oo )
) ) ) ) )
41, 2, 3mp2an 426 . 2  |-  ( +oo +e -oo )  =  if ( +oo  = +oo ,  if ( -oo  = -oo ,  0 , +oo ) ,  if ( +oo  = -oo ,  if ( -oo  = +oo ,  0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( +oo  + -oo )
) ) ) )
5 eqid 2196 . . 3  |- +oo  = +oo
65iftruei 3567 . 2  |-  if ( +oo  = +oo ,  if ( -oo  = -oo ,  0 , +oo ) ,  if ( +oo  = -oo ,  if ( -oo  = +oo , 
0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( +oo  + -oo ) ) ) ) )  =  if ( -oo  = -oo , 
0 , +oo )
7 eqid 2196 . . 3  |- -oo  = -oo
87iftruei 3567 . 2  |-  if ( -oo  = -oo , 
0 , +oo )  =  0
94, 6, 83eqtri 2221 1  |-  ( +oo +e -oo )  =  0
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167   ifcif 3561  (class class class)co 5922   0cc0 7879    + caddc 7882   +oocpnf 8058   -oocmnf 8059   RR*cxr 8060   +ecxad 9845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976  ax-rnegex 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-xadd 9848
This theorem is referenced by:  xnegid  9934  xaddcom  9936  xnegdi  9943  xsubge0  9956  xposdif  9957  xlesubadd  9958  xrmaxadd  11426  xblss2  14641
  Copyright terms: Public domain W3C validator