ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfaddmnf Unicode version

Theorem pnfaddmnf 10046
Description: Addition of positive and negative infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
pnfaddmnf  |-  ( +oo +e -oo )  =  0

Proof of Theorem pnfaddmnf
StepHypRef Expression
1 pnfxr 8199 . . 3  |- +oo  e.  RR*
2 mnfxr 8203 . . 3  |- -oo  e.  RR*
3 xaddval 10041 . . 3  |-  ( ( +oo  e.  RR*  /\ -oo  e.  RR* )  ->  ( +oo +e -oo )  =  if ( +oo  = +oo ,  if ( -oo  = -oo ,  0 , +oo ) ,  if ( +oo  = -oo ,  if ( -oo  = +oo ,  0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( +oo  + -oo )
) ) ) ) )
41, 2, 3mp2an 426 . 2  |-  ( +oo +e -oo )  =  if ( +oo  = +oo ,  if ( -oo  = -oo ,  0 , +oo ) ,  if ( +oo  = -oo ,  if ( -oo  = +oo ,  0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( +oo  + -oo )
) ) ) )
5 eqid 2229 . . 3  |- +oo  = +oo
65iftruei 3608 . 2  |-  if ( +oo  = +oo ,  if ( -oo  = -oo ,  0 , +oo ) ,  if ( +oo  = -oo ,  if ( -oo  = +oo , 
0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( +oo  + -oo ) ) ) ) )  =  if ( -oo  = -oo , 
0 , +oo )
7 eqid 2229 . . 3  |- -oo  = -oo
87iftruei 3608 . 2  |-  if ( -oo  = -oo , 
0 , +oo )  =  0
94, 6, 83eqtri 2254 1  |-  ( +oo +e -oo )  =  0
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200   ifcif 3602  (class class class)co 6001   0cc0 7999    + caddc 8002   +oocpnf 8178   -oocmnf 8179   RR*cxr 8180   +ecxad 9966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096  ax-rnegex 8108
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-xadd 9969
This theorem is referenced by:  xnegid  10055  xaddcom  10057  xnegdi  10064  xsubge0  10077  xposdif  10078  xlesubadd  10079  xrmaxadd  11772  xblss2  15079
  Copyright terms: Public domain W3C validator