ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemj0 Unicode version

Theorem ennnfonelemj0 12805
Description: Lemma for ennnfone 12829. Initial state for  J. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
Assertion
Ref Expression
ennnfonelemj0  |-  ( ph  ->  ( J `  0
)  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
Distinct variable groups:    A, g    x, N
Allowed substitution hints:    ph( x, y, g, j, k, n)    A( x, y, j, k, n)    F( x, y, g, j, k, n)    G( x, y, g, j, k, n)    H( x, y, g, j, k, n)    J( x, y, g, j, k, n)    N( y, g, j, k, n)

Proof of Theorem ennnfonelemj0
StepHypRef Expression
1 0nn0 9312 . . . 4  |-  0  e.  NN0
2 eqid 2205 . . . . . 6  |-  0  =  0
32iftruei 3577 . . . . 5  |-  if ( 0  =  0 ,  (/) ,  ( `' N `  ( 0  -  1 ) ) )  =  (/)
4 0ex 4172 . . . . 5  |-  (/)  e.  _V
53, 4eqeltri 2278 . . . 4  |-  if ( 0  =  0 ,  (/) ,  ( `' N `  ( 0  -  1 ) ) )  e. 
_V
6 eqeq1 2212 . . . . . 6  |-  ( x  =  0  ->  (
x  =  0  <->  0  =  0 ) )
7 fvoveq1 5969 . . . . . 6  |-  ( x  =  0  ->  ( `' N `  ( x  -  1 ) )  =  ( `' N `  ( 0  -  1 ) ) )
86, 7ifbieq2d 3595 . . . . 5  |-  ( x  =  0  ->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) )  =  if ( 0  =  0 ,  (/) ,  ( `' N `  ( 0  -  1 ) ) ) )
9 ennnfonelemh.j . . . . 5  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
108, 9fvmptg 5657 . . . 4  |-  ( ( 0  e.  NN0  /\  if ( 0  =  0 ,  (/) ,  ( `' N `  ( 0  -  1 ) ) )  e.  _V )  ->  ( J `  0
)  =  if ( 0  =  0 ,  (/) ,  ( `' N `  ( 0  -  1 ) ) ) )
111, 5, 10mp2an 426 . . 3  |-  ( J `
 0 )  =  if ( 0  =  0 ,  (/) ,  ( `' N `  ( 0  -  1 ) ) )
1211, 3eqtri 2226 . 2  |-  ( J `
 0 )  =  (/)
13 dmeq 4879 . . . 4  |-  ( g  =  (/)  ->  dom  g  =  dom  (/) )
1413eleq1d 2274 . . 3  |-  ( g  =  (/)  ->  ( dom  g  e.  om  <->  dom  (/)  e.  om ) )
15 fun0 5333 . . . . 5  |-  Fun  (/)
16 0ss 3499 . . . . 5  |-  (/)  C_  ( om  X.  A )
1715, 16pm3.2i 272 . . . 4  |-  ( Fun  (/)  /\  (/)  C_  ( om  X.  A ) )
18 omex 4642 . . . . . 6  |-  om  e.  _V
19 ennnfonelemh.f . . . . . 6  |-  ( ph  ->  F : om -onto-> A
)
20 focdmex 6202 . . . . . 6  |-  ( om  e.  _V  ->  ( F : om -onto-> A  ->  A  e.  _V )
)
2118, 19, 20mpsyl 65 . . . . 5  |-  ( ph  ->  A  e.  _V )
22 elpmg 6753 . . . . 5  |-  ( ( A  e.  _V  /\  om  e.  _V )  -> 
( (/)  e.  ( A 
^pm  om )  <->  ( Fun  (/) 
/\  (/)  C_  ( om  X.  A ) ) ) )
2321, 18, 22sylancl 413 . . . 4  |-  ( ph  ->  ( (/)  e.  ( A  ^pm  om )  <->  ( Fun  (/) 
/\  (/)  C_  ( om  X.  A ) ) ) )
2417, 23mpbiri 168 . . 3  |-  ( ph  -> 
(/)  e.  ( A  ^pm  om ) )
25 dm0 4893 . . . . 5  |-  dom  (/)  =  (/)
26 peano1 4643 . . . . 5  |-  (/)  e.  om
2725, 26eqeltri 2278 . . . 4  |-  dom  (/)  e.  om
2827a1i 9 . . 3  |-  ( ph  ->  dom  (/)  e.  om )
2914, 24, 28elrabd 2931 . 2  |-  ( ph  -> 
(/)  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
3012, 29eqeltrid 2292 1  |-  ( ph  ->  ( J `  0
)  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 836    = wceq 1373    e. wcel 2176    =/= wne 2376   A.wral 2484   E.wrex 2485   {crab 2488   _Vcvv 2772    u. cun 3164    C_ wss 3166   (/)c0 3460   ifcif 3571   {csn 3633   <.cop 3636    |-> cmpt 4106   suc csuc 4413   omcom 4639    X. cxp 4674   `'ccnv 4675   dom cdm 4676   "cima 4679   Fun wfun 5266   -onto->wfo 5270   ` cfv 5272  (class class class)co 5946    e. cmpo 5948  freccfrec 6478    ^pm cpm 6738   0cc0 7927   1c1 7928    + caddc 7930    - cmin 8245   NN0cn0 9297   ZZcz 9374    seqcseq 10594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-1cn 8020  ax-icn 8022  ax-addcl 8023  ax-mulcl 8025  ax-i2m1 8032
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pm 6740  df-n0 9298
This theorem is referenced by:  ennnfonelemh  12808  ennnfonelem0  12809  ennnfonelemp1  12810  ennnfonelemom  12812
  Copyright terms: Public domain W3C validator