ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemj0 Unicode version

Theorem ennnfonelemj0 12887
Description: Lemma for ennnfone 12911. Initial state for  J. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
Assertion
Ref Expression
ennnfonelemj0  |-  ( ph  ->  ( J `  0
)  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
Distinct variable groups:    A, g    x, N
Allowed substitution hints:    ph( x, y, g, j, k, n)    A( x, y, j, k, n)    F( x, y, g, j, k, n)    G( x, y, g, j, k, n)    H( x, y, g, j, k, n)    J( x, y, g, j, k, n)    N( y, g, j, k, n)

Proof of Theorem ennnfonelemj0
StepHypRef Expression
1 0nn0 9345 . . . 4  |-  0  e.  NN0
2 eqid 2207 . . . . . 6  |-  0  =  0
32iftruei 3585 . . . . 5  |-  if ( 0  =  0 ,  (/) ,  ( `' N `  ( 0  -  1 ) ) )  =  (/)
4 0ex 4187 . . . . 5  |-  (/)  e.  _V
53, 4eqeltri 2280 . . . 4  |-  if ( 0  =  0 ,  (/) ,  ( `' N `  ( 0  -  1 ) ) )  e. 
_V
6 eqeq1 2214 . . . . . 6  |-  ( x  =  0  ->  (
x  =  0  <->  0  =  0 ) )
7 fvoveq1 5990 . . . . . 6  |-  ( x  =  0  ->  ( `' N `  ( x  -  1 ) )  =  ( `' N `  ( 0  -  1 ) ) )
86, 7ifbieq2d 3604 . . . . 5  |-  ( x  =  0  ->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) )  =  if ( 0  =  0 ,  (/) ,  ( `' N `  ( 0  -  1 ) ) ) )
9 ennnfonelemh.j . . . . 5  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
108, 9fvmptg 5678 . . . 4  |-  ( ( 0  e.  NN0  /\  if ( 0  =  0 ,  (/) ,  ( `' N `  ( 0  -  1 ) ) )  e.  _V )  ->  ( J `  0
)  =  if ( 0  =  0 ,  (/) ,  ( `' N `  ( 0  -  1 ) ) ) )
111, 5, 10mp2an 426 . . 3  |-  ( J `
 0 )  =  if ( 0  =  0 ,  (/) ,  ( `' N `  ( 0  -  1 ) ) )
1211, 3eqtri 2228 . 2  |-  ( J `
 0 )  =  (/)
13 dmeq 4897 . . . 4  |-  ( g  =  (/)  ->  dom  g  =  dom  (/) )
1413eleq1d 2276 . . 3  |-  ( g  =  (/)  ->  ( dom  g  e.  om  <->  dom  (/)  e.  om ) )
15 fun0 5351 . . . . 5  |-  Fun  (/)
16 0ss 3507 . . . . 5  |-  (/)  C_  ( om  X.  A )
1715, 16pm3.2i 272 . . . 4  |-  ( Fun  (/)  /\  (/)  C_  ( om  X.  A ) )
18 omex 4659 . . . . . 6  |-  om  e.  _V
19 ennnfonelemh.f . . . . . 6  |-  ( ph  ->  F : om -onto-> A
)
20 focdmex 6223 . . . . . 6  |-  ( om  e.  _V  ->  ( F : om -onto-> A  ->  A  e.  _V )
)
2118, 19, 20mpsyl 65 . . . . 5  |-  ( ph  ->  A  e.  _V )
22 elpmg 6774 . . . . 5  |-  ( ( A  e.  _V  /\  om  e.  _V )  -> 
( (/)  e.  ( A 
^pm  om )  <->  ( Fun  (/) 
/\  (/)  C_  ( om  X.  A ) ) ) )
2321, 18, 22sylancl 413 . . . 4  |-  ( ph  ->  ( (/)  e.  ( A  ^pm  om )  <->  ( Fun  (/) 
/\  (/)  C_  ( om  X.  A ) ) ) )
2417, 23mpbiri 168 . . 3  |-  ( ph  -> 
(/)  e.  ( A  ^pm  om ) )
25 dm0 4911 . . . . 5  |-  dom  (/)  =  (/)
26 peano1 4660 . . . . 5  |-  (/)  e.  om
2725, 26eqeltri 2280 . . . 4  |-  dom  (/)  e.  om
2827a1i 9 . . 3  |-  ( ph  ->  dom  (/)  e.  om )
2914, 24, 28elrabd 2938 . 2  |-  ( ph  -> 
(/)  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
3012, 29eqeltrid 2294 1  |-  ( ph  ->  ( J `  0
)  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 836    = wceq 1373    e. wcel 2178    =/= wne 2378   A.wral 2486   E.wrex 2487   {crab 2490   _Vcvv 2776    u. cun 3172    C_ wss 3174   (/)c0 3468   ifcif 3579   {csn 3643   <.cop 3646    |-> cmpt 4121   suc csuc 4430   omcom 4656    X. cxp 4691   `'ccnv 4692   dom cdm 4693   "cima 4696   Fun wfun 5284   -onto->wfo 5288   ` cfv 5290  (class class class)co 5967    e. cmpo 5969  freccfrec 6499    ^pm cpm 6759   0cc0 7960   1c1 7961    + caddc 7963    - cmin 8278   NN0cn0 9330   ZZcz 9407    seqcseq 10629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-1cn 8053  ax-icn 8055  ax-addcl 8056  ax-mulcl 8058  ax-i2m1 8065
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pm 6761  df-n0 9331
This theorem is referenced by:  ennnfonelemh  12890  ennnfonelem0  12891  ennnfonelemp1  12892  ennnfonelemom  12894
  Copyright terms: Public domain W3C validator