ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemj0 Unicode version

Theorem ennnfonelemj0 12334
Description: Lemma for ennnfone 12358. Initial state for  J. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
Assertion
Ref Expression
ennnfonelemj0  |-  ( ph  ->  ( J `  0
)  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
Distinct variable groups:    A, g    x, N
Allowed substitution hints:    ph( x, y, g, j, k, n)    A( x, y, j, k, n)    F( x, y, g, j, k, n)    G( x, y, g, j, k, n)    H( x, y, g, j, k, n)    J( x, y, g, j, k, n)    N( y, g, j, k, n)

Proof of Theorem ennnfonelemj0
StepHypRef Expression
1 0nn0 9129 . . . 4  |-  0  e.  NN0
2 eqid 2165 . . . . . 6  |-  0  =  0
32iftruei 3526 . . . . 5  |-  if ( 0  =  0 ,  (/) ,  ( `' N `  ( 0  -  1 ) ) )  =  (/)
4 0ex 4109 . . . . 5  |-  (/)  e.  _V
53, 4eqeltri 2239 . . . 4  |-  if ( 0  =  0 ,  (/) ,  ( `' N `  ( 0  -  1 ) ) )  e. 
_V
6 eqeq1 2172 . . . . . 6  |-  ( x  =  0  ->  (
x  =  0  <->  0  =  0 ) )
7 fvoveq1 5865 . . . . . 6  |-  ( x  =  0  ->  ( `' N `  ( x  -  1 ) )  =  ( `' N `  ( 0  -  1 ) ) )
86, 7ifbieq2d 3544 . . . . 5  |-  ( x  =  0  ->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) )  =  if ( 0  =  0 ,  (/) ,  ( `' N `  ( 0  -  1 ) ) ) )
9 ennnfonelemh.j . . . . 5  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
108, 9fvmptg 5562 . . . 4  |-  ( ( 0  e.  NN0  /\  if ( 0  =  0 ,  (/) ,  ( `' N `  ( 0  -  1 ) ) )  e.  _V )  ->  ( J `  0
)  =  if ( 0  =  0 ,  (/) ,  ( `' N `  ( 0  -  1 ) ) ) )
111, 5, 10mp2an 423 . . 3  |-  ( J `
 0 )  =  if ( 0  =  0 ,  (/) ,  ( `' N `  ( 0  -  1 ) ) )
1211, 3eqtri 2186 . 2  |-  ( J `
 0 )  =  (/)
13 dmeq 4804 . . . 4  |-  ( g  =  (/)  ->  dom  g  =  dom  (/) )
1413eleq1d 2235 . . 3  |-  ( g  =  (/)  ->  ( dom  g  e.  om  <->  dom  (/)  e.  om ) )
15 fun0 5246 . . . . 5  |-  Fun  (/)
16 0ss 3447 . . . . 5  |-  (/)  C_  ( om  X.  A )
1715, 16pm3.2i 270 . . . 4  |-  ( Fun  (/)  /\  (/)  C_  ( om  X.  A ) )
18 omex 4570 . . . . . 6  |-  om  e.  _V
19 ennnfonelemh.f . . . . . 6  |-  ( ph  ->  F : om -onto-> A
)
20 focdmex 10700 . . . . . 6  |-  ( ( om  e.  _V  /\  F : om -onto-> A )  ->  A  e.  _V )
2118, 19, 20sylancr 411 . . . . 5  |-  ( ph  ->  A  e.  _V )
22 elpmg 6630 . . . . 5  |-  ( ( A  e.  _V  /\  om  e.  _V )  -> 
( (/)  e.  ( A 
^pm  om )  <->  ( Fun  (/) 
/\  (/)  C_  ( om  X.  A ) ) ) )
2321, 18, 22sylancl 410 . . . 4  |-  ( ph  ->  ( (/)  e.  ( A  ^pm  om )  <->  ( Fun  (/) 
/\  (/)  C_  ( om  X.  A ) ) ) )
2417, 23mpbiri 167 . . 3  |-  ( ph  -> 
(/)  e.  ( A  ^pm  om ) )
25 dm0 4818 . . . . 5  |-  dom  (/)  =  (/)
26 peano1 4571 . . . . 5  |-  (/)  e.  om
2725, 26eqeltri 2239 . . . 4  |-  dom  (/)  e.  om
2827a1i 9 . . 3  |-  ( ph  ->  dom  (/)  e.  om )
2914, 24, 28elrabd 2884 . 2  |-  ( ph  -> 
(/)  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
3012, 29eqeltrid 2253 1  |-  ( ph  ->  ( J `  0
)  e.  { g  e.  ( A  ^pm  om )  |  dom  g  e.  om } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 824    = wceq 1343    e. wcel 2136    =/= wne 2336   A.wral 2444   E.wrex 2445   {crab 2448   _Vcvv 2726    u. cun 3114    C_ wss 3116   (/)c0 3409   ifcif 3520   {csn 3576   <.cop 3579    |-> cmpt 4043   suc csuc 4343   omcom 4567    X. cxp 4602   `'ccnv 4603   dom cdm 4604   "cima 4607   Fun wfun 5182   -onto->wfo 5186   ` cfv 5188  (class class class)co 5842    e. cmpo 5844  freccfrec 6358    ^pm cpm 6615   0cc0 7753   1c1 7754    + caddc 7756    - cmin 8069   NN0cn0 9114   ZZcz 9191    seqcseq 10380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-mulcl 7851  ax-i2m1 7858
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pm 6617  df-n0 9115
This theorem is referenced by:  ennnfonelemh  12337  ennnfonelem0  12338  ennnfonelemp1  12339  ennnfonelemom  12341
  Copyright terms: Public domain W3C validator