Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ennnfonelemj0 | Unicode version |
Description: Lemma for ennnfone 12126. Initial state for . (Contributed by Jim Kingdon, 20-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemh.dceq | DECID |
ennnfonelemh.f | |
ennnfonelemh.ne | |
ennnfonelemh.g | |
ennnfonelemh.n | frec |
ennnfonelemh.j | |
ennnfonelemh.h |
Ref | Expression |
---|---|
ennnfonelemj0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 9088 | . . . 4 | |
2 | eqid 2157 | . . . . . 6 | |
3 | 2 | iftruei 3511 | . . . . 5 |
4 | 0ex 4091 | . . . . 5 | |
5 | 3, 4 | eqeltri 2230 | . . . 4 |
6 | eqeq1 2164 | . . . . . 6 | |
7 | fvoveq1 5841 | . . . . . 6 | |
8 | 6, 7 | ifbieq2d 3529 | . . . . 5 |
9 | ennnfonelemh.j | . . . . 5 | |
10 | 8, 9 | fvmptg 5541 | . . . 4 |
11 | 1, 5, 10 | mp2an 423 | . . 3 |
12 | 11, 3 | eqtri 2178 | . 2 |
13 | dmeq 4783 | . . . 4 | |
14 | 13 | eleq1d 2226 | . . 3 |
15 | fun0 5225 | . . . . 5 | |
16 | 0ss 3432 | . . . . 5 | |
17 | 15, 16 | pm3.2i 270 | . . . 4 |
18 | omex 4550 | . . . . . 6 | |
19 | ennnfonelemh.f | . . . . . 6 | |
20 | focdmex 10643 | . . . . . 6 | |
21 | 18, 19, 20 | sylancr 411 | . . . . 5 |
22 | elpmg 6602 | . . . . 5 | |
23 | 21, 18, 22 | sylancl 410 | . . . 4 |
24 | 17, 23 | mpbiri 167 | . . 3 |
25 | dm0 4797 | . . . . 5 | |
26 | peano1 4551 | . . . . 5 | |
27 | 25, 26 | eqeltri 2230 | . . . 4 |
28 | 27 | a1i 9 | . . 3 |
29 | 14, 24, 28 | elrabd 2870 | . 2 |
30 | 12, 29 | eqeltrid 2244 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 DECID wdc 820 wceq 1335 wcel 2128 wne 2327 wral 2435 wrex 2436 crab 2439 cvv 2712 cun 3100 wss 3102 c0 3394 cif 3505 csn 3560 cop 3563 cmpt 4025 csuc 4324 com 4547 cxp 4581 ccnv 4582 cdm 4583 cima 4586 wfun 5161 wfo 5165 cfv 5167 (class class class)co 5818 cmpo 5820 freccfrec 6331 cpm 6587 cc0 7715 c1 7716 caddc 7718 cmin 8029 cn0 9073 cz 9150 cseq 10326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 ax-1cn 7808 ax-icn 7810 ax-addcl 7811 ax-mulcl 7813 ax-i2m1 7820 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-pm 6589 df-n0 9074 |
This theorem is referenced by: ennnfonelemh 12105 ennnfonelem0 12106 ennnfonelemp1 12107 ennnfonelemom 12109 |
Copyright terms: Public domain | W3C validator |