| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemj0 | Unicode version | ||
| Description: Lemma for ennnfone 12996. Initial state for |
| Ref | Expression |
|---|---|
| ennnfonelemh.dceq |
|
| ennnfonelemh.f |
|
| ennnfonelemh.ne |
|
| ennnfonelemh.g |
|
| ennnfonelemh.n |
|
| ennnfonelemh.j |
|
| ennnfonelemh.h |
|
| Ref | Expression |
|---|---|
| ennnfonelemj0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 9384 |
. . . 4
| |
| 2 | eqid 2229 |
. . . . . 6
| |
| 3 | 2 | iftruei 3608 |
. . . . 5
|
| 4 | 0ex 4211 |
. . . . 5
| |
| 5 | 3, 4 | eqeltri 2302 |
. . . 4
|
| 6 | eqeq1 2236 |
. . . . . 6
| |
| 7 | fvoveq1 6024 |
. . . . . 6
| |
| 8 | 6, 7 | ifbieq2d 3627 |
. . . . 5
|
| 9 | ennnfonelemh.j |
. . . . 5
| |
| 10 | 8, 9 | fvmptg 5710 |
. . . 4
|
| 11 | 1, 5, 10 | mp2an 426 |
. . 3
|
| 12 | 11, 3 | eqtri 2250 |
. 2
|
| 13 | dmeq 4923 |
. . . 4
| |
| 14 | 13 | eleq1d 2298 |
. . 3
|
| 15 | fun0 5379 |
. . . . 5
| |
| 16 | 0ss 3530 |
. . . . 5
| |
| 17 | 15, 16 | pm3.2i 272 |
. . . 4
|
| 18 | omex 4685 |
. . . . . 6
| |
| 19 | ennnfonelemh.f |
. . . . . 6
| |
| 20 | focdmex 6260 |
. . . . . 6
| |
| 21 | 18, 19, 20 | mpsyl 65 |
. . . . 5
|
| 22 | elpmg 6811 |
. . . . 5
| |
| 23 | 21, 18, 22 | sylancl 413 |
. . . 4
|
| 24 | 17, 23 | mpbiri 168 |
. . 3
|
| 25 | dm0 4937 |
. . . . 5
| |
| 26 | peano1 4686 |
. . . . 5
| |
| 27 | 25, 26 | eqeltri 2302 |
. . . 4
|
| 28 | 27 | a1i 9 |
. . 3
|
| 29 | 14, 24, 28 | elrabd 2961 |
. 2
|
| 30 | 12, 29 | eqeltrid 2316 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-1cn 8092 ax-icn 8094 ax-addcl 8095 ax-mulcl 8097 ax-i2m1 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pm 6798 df-n0 9370 |
| This theorem is referenced by: ennnfonelemh 12975 ennnfonelem0 12976 ennnfonelemp1 12977 ennnfonelemom 12979 |
| Copyright terms: Public domain | W3C validator |