ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzonelfzo Unicode version

Theorem elfzonelfzo 10031
Description: If an element of a half-open integer range is not contained in the lower subrange, it must be in the upper subrange. (Contributed by Alexander van der Vekens, 30-Mar-2018.)
Assertion
Ref Expression
elfzonelfzo  |-  ( N  e.  ZZ  ->  (
( K  e.  ( M..^ R )  /\  -.  K  e.  ( M..^ N ) )  ->  K  e.  ( N..^ R ) ) )

Proof of Theorem elfzonelfzo
StepHypRef Expression
1 elfzo2 9951 . . 3  |-  ( K  e.  ( M..^ R
)  <->  ( K  e.  ( ZZ>= `  M )  /\  R  e.  ZZ  /\  K  <  R ) )
2 simpr 109 . . . . . 6  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  R  e.  ZZ  /\  K  <  R )  /\  -.  K  e.  ( M..^ N ) )  /\  N  e.  ZZ )  ->  N  e.  ZZ )
3 eluzelz 9354 . . . . . . . 8  |-  ( K  e.  ( ZZ>= `  M
)  ->  K  e.  ZZ )
433ad2ant1 1002 . . . . . . 7  |-  ( ( K  e.  ( ZZ>= `  M )  /\  R  e.  ZZ  /\  K  < 
R )  ->  K  e.  ZZ )
54ad2antrr 479 . . . . . 6  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  R  e.  ZZ  /\  K  <  R )  /\  -.  K  e.  ( M..^ N ) )  /\  N  e.  ZZ )  ->  K  e.  ZZ )
63adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  K  e.  ZZ )
7 eluzel2 9350 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
87adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  M  e.  ZZ )
9 simpr 109 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  N  e.  ZZ )
10 elfzo 9950 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M..^ N )  <->  ( M  <_  K  /\  K  < 
N ) ) )
116, 8, 9, 10syl3anc 1216 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  ( K  e.  ( M..^ N )  <->  ( M  <_  K  /\  K  < 
N ) ) )
12 eluzle 9357 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( ZZ>= `  M
)  ->  M  <_  K )
1312adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  M  <_  K )
1413biantrurd 303 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  ( K  <  N  <->  ( M  <_  K  /\  K  < 
N ) ) )
1511, 14bitr4d 190 . . . . . . . . . . . . 13  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  ( K  e.  ( M..^ N )  <->  K  <  N ) )
1615notbid 656 . . . . . . . . . . . 12  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  ( -.  K  e.  ( M..^ N )  <->  -.  K  <  N ) )
179zred 9192 . . . . . . . . . . . . 13  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  N  e.  RR )
186zred 9192 . . . . . . . . . . . . 13  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  K  e.  RR )
1917, 18lenltd 7899 . . . . . . . . . . . 12  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  ( N  <_  K  <->  -.  K  <  N ) )
2016, 19bitr4d 190 . . . . . . . . . . 11  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  ( -.  K  e.  ( M..^ N )  <->  N  <_  K ) )
2120biimpd 143 . . . . . . . . . 10  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  ( -.  K  e.  ( M..^ N )  ->  N  <_  K ) )
2221ex 114 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( N  e.  ZZ  ->  ( -.  K  e.  ( M..^ N )  ->  N  <_  K ) ) )
2322com23 78 . . . . . . . 8  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( -.  K  e.  ( M..^ N )  ->  ( N  e.  ZZ  ->  N  <_  K ) ) )
24233ad2ant1 1002 . . . . . . 7  |-  ( ( K  e.  ( ZZ>= `  M )  /\  R  e.  ZZ  /\  K  < 
R )  ->  ( -.  K  e.  ( M..^ N )  ->  ( N  e.  ZZ  ->  N  <_  K ) ) )
2524imp31 254 . . . . . 6  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  R  e.  ZZ  /\  K  <  R )  /\  -.  K  e.  ( M..^ N ) )  /\  N  e.  ZZ )  ->  N  <_  K )
26 eluz2 9351 . . . . . 6  |-  ( K  e.  ( ZZ>= `  N
)  <->  ( N  e.  ZZ  /\  K  e.  ZZ  /\  N  <_  K ) )
272, 5, 25, 26syl3anbrc 1165 . . . . 5  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  R  e.  ZZ  /\  K  <  R )  /\  -.  K  e.  ( M..^ N ) )  /\  N  e.  ZZ )  ->  K  e.  ( ZZ>= `  N )
)
28 simpll2 1021 . . . . 5  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  R  e.  ZZ  /\  K  <  R )  /\  -.  K  e.  ( M..^ N ) )  /\  N  e.  ZZ )  ->  R  e.  ZZ )
29 simpll3 1022 . . . . 5  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  R  e.  ZZ  /\  K  <  R )  /\  -.  K  e.  ( M..^ N ) )  /\  N  e.  ZZ )  ->  K  <  R )
30 elfzo2 9951 . . . . 5  |-  ( K  e.  ( N..^ R
)  <->  ( K  e.  ( ZZ>= `  N )  /\  R  e.  ZZ  /\  K  <  R ) )
3127, 28, 29, 30syl3anbrc 1165 . . . 4  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  R  e.  ZZ  /\  K  <  R )  /\  -.  K  e.  ( M..^ N ) )  /\  N  e.  ZZ )  ->  K  e.  ( N..^ R ) )
3231ex 114 . . 3  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  R  e.  ZZ  /\  K  <  R )  /\  -.  K  e.  ( M..^ N ) )  -> 
( N  e.  ZZ  ->  K  e.  ( N..^ R ) ) )
331, 32sylanb 282 . 2  |-  ( ( K  e.  ( M..^ R )  /\  -.  K  e.  ( M..^ N ) )  -> 
( N  e.  ZZ  ->  K  e.  ( N..^ R ) ) )
3433com12 30 1  |-  ( N  e.  ZZ  ->  (
( K  e.  ( M..^ R )  /\  -.  K  e.  ( M..^ N ) )  ->  K  e.  ( N..^ R ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    e. wcel 1480   class class class wbr 3932   ` cfv 5126  (class class class)co 5777    < clt 7819    <_ cle 7820   ZZcz 9073   ZZ>=cuz 9345  ..^cfzo 9943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4049  ax-pow 4101  ax-pr 4134  ax-un 4358  ax-setind 4455  ax-cnex 7730  ax-resscn 7731  ax-1cn 7732  ax-1re 7733  ax-icn 7734  ax-addcl 7735  ax-addrcl 7736  ax-mulcl 7737  ax-addcom 7739  ax-addass 7741  ax-distr 7743  ax-i2m1 7744  ax-0lt1 7745  ax-0id 7747  ax-rnegex 7748  ax-cnre 7750  ax-pre-ltirr 7751  ax-pre-ltwlin 7752  ax-pre-lttrn 7753  ax-pre-ltadd 7755
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3740  df-int 3775  df-iun 3818  df-br 3933  df-opab 3993  df-mpt 3994  df-id 4218  df-xp 4548  df-rel 4549  df-cnv 4550  df-co 4551  df-dm 4552  df-rn 4553  df-res 4554  df-ima 4555  df-iota 5091  df-fun 5128  df-fn 5129  df-f 5130  df-fv 5134  df-riota 5733  df-ov 5780  df-oprab 5781  df-mpo 5782  df-1st 6041  df-2nd 6042  df-pnf 7821  df-mnf 7822  df-xr 7823  df-ltxr 7824  df-le 7825  df-sub 7954  df-neg 7955  df-inn 8740  df-n0 8997  df-z 9074  df-uz 9346  df-fz 9815  df-fzo 9944
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator