ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzonelfzo Unicode version

Theorem elfzonelfzo 10243
Description: If an element of a half-open integer range is not contained in the lower subrange, it must be in the upper subrange. (Contributed by Alexander van der Vekens, 30-Mar-2018.)
Assertion
Ref Expression
elfzonelfzo  |-  ( N  e.  ZZ  ->  (
( K  e.  ( M..^ R )  /\  -.  K  e.  ( M..^ N ) )  ->  K  e.  ( N..^ R ) ) )

Proof of Theorem elfzonelfzo
StepHypRef Expression
1 elfzo2 10163 . . 3  |-  ( K  e.  ( M..^ R
)  <->  ( K  e.  ( ZZ>= `  M )  /\  R  e.  ZZ  /\  K  <  R ) )
2 simpr 110 . . . . . 6  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  R  e.  ZZ  /\  K  <  R )  /\  -.  K  e.  ( M..^ N ) )  /\  N  e.  ZZ )  ->  N  e.  ZZ )
3 eluzelz 9550 . . . . . . . 8  |-  ( K  e.  ( ZZ>= `  M
)  ->  K  e.  ZZ )
433ad2ant1 1019 . . . . . . 7  |-  ( ( K  e.  ( ZZ>= `  M )  /\  R  e.  ZZ  /\  K  < 
R )  ->  K  e.  ZZ )
54ad2antrr 488 . . . . . 6  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  R  e.  ZZ  /\  K  <  R )  /\  -.  K  e.  ( M..^ N ) )  /\  N  e.  ZZ )  ->  K  e.  ZZ )
63adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  K  e.  ZZ )
7 eluzel2 9546 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
87adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  M  e.  ZZ )
9 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  N  e.  ZZ )
10 elfzo 10162 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M..^ N )  <->  ( M  <_  K  /\  K  < 
N ) ) )
116, 8, 9, 10syl3anc 1248 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  ( K  e.  ( M..^ N )  <->  ( M  <_  K  /\  K  < 
N ) ) )
12 eluzle 9553 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( ZZ>= `  M
)  ->  M  <_  K )
1312adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  M  <_  K )
1413biantrurd 305 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  ( K  <  N  <->  ( M  <_  K  /\  K  < 
N ) ) )
1511, 14bitr4d 191 . . . . . . . . . . . . 13  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  ( K  e.  ( M..^ N )  <->  K  <  N ) )
1615notbid 668 . . . . . . . . . . . 12  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  ( -.  K  e.  ( M..^ N )  <->  -.  K  <  N ) )
179zred 9388 . . . . . . . . . . . . 13  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  N  e.  RR )
186zred 9388 . . . . . . . . . . . . 13  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  K  e.  RR )
1917, 18lenltd 8088 . . . . . . . . . . . 12  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  ( N  <_  K  <->  -.  K  <  N ) )
2016, 19bitr4d 191 . . . . . . . . . . 11  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  ( -.  K  e.  ( M..^ N )  <->  N  <_  K ) )
2120biimpd 144 . . . . . . . . . 10  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  ( -.  K  e.  ( M..^ N )  ->  N  <_  K ) )
2221ex 115 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( N  e.  ZZ  ->  ( -.  K  e.  ( M..^ N )  ->  N  <_  K ) ) )
2322com23 78 . . . . . . . 8  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( -.  K  e.  ( M..^ N )  ->  ( N  e.  ZZ  ->  N  <_  K ) ) )
24233ad2ant1 1019 . . . . . . 7  |-  ( ( K  e.  ( ZZ>= `  M )  /\  R  e.  ZZ  /\  K  < 
R )  ->  ( -.  K  e.  ( M..^ N )  ->  ( N  e.  ZZ  ->  N  <_  K ) ) )
2524imp31 256 . . . . . 6  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  R  e.  ZZ  /\  K  <  R )  /\  -.  K  e.  ( M..^ N ) )  /\  N  e.  ZZ )  ->  N  <_  K )
26 eluz2 9547 . . . . . 6  |-  ( K  e.  ( ZZ>= `  N
)  <->  ( N  e.  ZZ  /\  K  e.  ZZ  /\  N  <_  K ) )
272, 5, 25, 26syl3anbrc 1182 . . . . 5  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  R  e.  ZZ  /\  K  <  R )  /\  -.  K  e.  ( M..^ N ) )  /\  N  e.  ZZ )  ->  K  e.  ( ZZ>= `  N )
)
28 simpll2 1038 . . . . 5  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  R  e.  ZZ  /\  K  <  R )  /\  -.  K  e.  ( M..^ N ) )  /\  N  e.  ZZ )  ->  R  e.  ZZ )
29 simpll3 1039 . . . . 5  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  R  e.  ZZ  /\  K  <  R )  /\  -.  K  e.  ( M..^ N ) )  /\  N  e.  ZZ )  ->  K  <  R )
30 elfzo2 10163 . . . . 5  |-  ( K  e.  ( N..^ R
)  <->  ( K  e.  ( ZZ>= `  N )  /\  R  e.  ZZ  /\  K  <  R ) )
3127, 28, 29, 30syl3anbrc 1182 . . . 4  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  R  e.  ZZ  /\  K  <  R )  /\  -.  K  e.  ( M..^ N ) )  /\  N  e.  ZZ )  ->  K  e.  ( N..^ R ) )
3231ex 115 . . 3  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  R  e.  ZZ  /\  K  <  R )  /\  -.  K  e.  ( M..^ N ) )  -> 
( N  e.  ZZ  ->  K  e.  ( N..^ R ) ) )
331, 32sylanb 284 . 2  |-  ( ( K  e.  ( M..^ R )  /\  -.  K  e.  ( M..^ N ) )  -> 
( N  e.  ZZ  ->  K  e.  ( N..^ R ) ) )
3433com12 30 1  |-  ( N  e.  ZZ  ->  (
( K  e.  ( M..^ R )  /\  -.  K  e.  ( M..^ N ) )  ->  K  e.  ( N..^ R ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 979    e. wcel 2158   class class class wbr 4015   ` cfv 5228  (class class class)co 5888    < clt 8005    <_ cle 8006   ZZcz 9266   ZZ>=cuz 9541  ..^cfzo 10155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-addcom 7924  ax-addass 7926  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-0id 7932  ax-rnegex 7933  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-ltadd 7940
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-inn 8933  df-n0 9190  df-z 9267  df-uz 9542  df-fz 10022  df-fzo 10156
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator