Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfzonelfzo | Unicode version |
Description: If an element of a half-open integer range is not contained in the lower subrange, it must be in the upper subrange. (Contributed by Alexander van der Vekens, 30-Mar-2018.) |
Ref | Expression |
---|---|
elfzonelfzo | ..^ ..^ ..^ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzo2 10085 | . . 3 ..^ | |
2 | simpr 109 | . . . . . 6 ..^ | |
3 | eluzelz 9475 | . . . . . . . 8 | |
4 | 3 | 3ad2ant1 1008 | . . . . . . 7 |
5 | 4 | ad2antrr 480 | . . . . . 6 ..^ |
6 | 3 | adantr 274 | . . . . . . . . . . . . . . 15 |
7 | eluzel2 9471 | . . . . . . . . . . . . . . . 16 | |
8 | 7 | adantr 274 | . . . . . . . . . . . . . . 15 |
9 | simpr 109 | . . . . . . . . . . . . . . 15 | |
10 | elfzo 10084 | . . . . . . . . . . . . . . 15 ..^ | |
11 | 6, 8, 9, 10 | syl3anc 1228 | . . . . . . . . . . . . . 14 ..^ |
12 | eluzle 9478 | . . . . . . . . . . . . . . . 16 | |
13 | 12 | adantr 274 | . . . . . . . . . . . . . . 15 |
14 | 13 | biantrurd 303 | . . . . . . . . . . . . . 14 |
15 | 11, 14 | bitr4d 190 | . . . . . . . . . . . . 13 ..^ |
16 | 15 | notbid 657 | . . . . . . . . . . . 12 ..^ |
17 | 9 | zred 9313 | . . . . . . . . . . . . 13 |
18 | 6 | zred 9313 | . . . . . . . . . . . . 13 |
19 | 17, 18 | lenltd 8016 | . . . . . . . . . . . 12 |
20 | 16, 19 | bitr4d 190 | . . . . . . . . . . 11 ..^ |
21 | 20 | biimpd 143 | . . . . . . . . . 10 ..^ |
22 | 21 | ex 114 | . . . . . . . . 9 ..^ |
23 | 22 | com23 78 | . . . . . . . 8 ..^ |
24 | 23 | 3ad2ant1 1008 | . . . . . . 7 ..^ |
25 | 24 | imp31 254 | . . . . . 6 ..^ |
26 | eluz2 9472 | . . . . . 6 | |
27 | 2, 5, 25, 26 | syl3anbrc 1171 | . . . . 5 ..^ |
28 | simpll2 1027 | . . . . 5 ..^ | |
29 | simpll3 1028 | . . . . 5 ..^ | |
30 | elfzo2 10085 | . . . . 5 ..^ | |
31 | 27, 28, 29, 30 | syl3anbrc 1171 | . . . 4 ..^ ..^ |
32 | 31 | ex 114 | . . 3 ..^ ..^ |
33 | 1, 32 | sylanb 282 | . 2 ..^ ..^ ..^ |
34 | 33 | com12 30 | 1 ..^ ..^ ..^ |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3a 968 wcel 2136 class class class wbr 3982 cfv 5188 (class class class)co 5842 clt 7933 cle 7934 cz 9191 cuz 9466 ..^cfzo 10077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 df-fzo 10078 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |