ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  irrmul Unicode version

Theorem irrmul 9767
Description: The product of a real which is not rational with a nonzero rational is not rational. Note that by "not rational" we mean the negation of "is rational" (whereas "irrational" is often defined to mean apart from any rational number - given excluded middle these two definitions would be equivalent). For a similar theorem with irrational in place of not rational, see irrmulap 9768. (Contributed by NM, 7-Nov-2008.)
Assertion
Ref Expression
irrmul  |-  ( ( A  e.  ( RR 
\  QQ )  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  x.  B )  e.  ( RR  \  QQ ) )

Proof of Theorem irrmul
StepHypRef Expression
1 eldif 3174 . . 3  |-  ( A  e.  ( RR  \  QQ )  <->  ( A  e.  RR  /\  -.  A  e.  QQ ) )
2 qre 9745 . . . . . . 7  |-  ( B  e.  QQ  ->  B  e.  RR )
3 remulcl 8052 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
42, 3sylan2 286 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  QQ )  ->  ( A  x.  B
)  e.  RR )
54ad2ant2r 509 . . . . 5  |-  ( ( ( A  e.  RR  /\ 
-.  A  e.  QQ )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( A  x.  B
)  e.  RR )
6 qdivcl 9763 . . . . . . . . . . . . 13  |-  ( ( ( A  x.  B
)  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  (
( A  x.  B
)  /  B )  e.  QQ )
763expb 1206 . . . . . . . . . . . 12  |-  ( ( ( A  x.  B
)  e.  QQ  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  ( ( A  x.  B )  /  B )  e.  QQ )
87expcom 116 . . . . . . . . . . 11  |-  ( ( B  e.  QQ  /\  B  =/=  0 )  -> 
( ( A  x.  B )  e.  QQ  ->  ( ( A  x.  B )  /  B
)  e.  QQ ) )
98adantl 277 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  ( ( A  x.  B )  e.  QQ  ->  ( ( A  x.  B )  /  B )  e.  QQ ) )
10 recn 8057 . . . . . . . . . . . . . 14  |-  ( A  e.  RR  ->  A  e.  CC )
11103ad2ant1 1020 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  QQ  /\  B  =/=  0 )  ->  A  e.  CC )
12 qcn 9754 . . . . . . . . . . . . . 14  |-  ( B  e.  QQ  ->  B  e.  CC )
13123ad2ant2 1021 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  QQ  /\  B  =/=  0 )  ->  B  e.  CC )
14 simp3 1001 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  QQ  /\  B  =/=  0 )  ->  B  =/=  0 )
15 0z 9382 . . . . . . . . . . . . . . . . 17  |-  0  e.  ZZ
16 zq 9746 . . . . . . . . . . . . . . . . 17  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
1715, 16ax-mp 5 . . . . . . . . . . . . . . . 16  |-  0  e.  QQ
18 qapne 9759 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  QQ  /\  0  e.  QQ )  ->  ( B #  0  <->  B  =/=  0 ) )
1917, 18mpan2 425 . . . . . . . . . . . . . . 15  |-  ( B  e.  QQ  ->  ( B #  0  <->  B  =/=  0
) )
20193ad2ant2 1021 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( B #  0  <->  B  =/=  0
) )
2114, 20mpbird 167 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  QQ  /\  B  =/=  0 )  ->  B #  0 )
2211, 13, 21divcanap4d 8868 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  QQ  /\  B  =/=  0 )  ->  (
( A  x.  B
)  /  B )  =  A )
23223expb 1206 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  ( ( A  x.  B )  /  B )  =  A )
2423eleq1d 2273 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  ( (
( A  x.  B
)  /  B )  e.  QQ  <->  A  e.  QQ ) )
259, 24sylibd 149 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  ( ( A  x.  B )  e.  QQ  ->  A  e.  QQ ) )
2625con3d 632 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  ( -.  A  e.  QQ  ->  -.  ( A  x.  B
)  e.  QQ ) )
2726ex 115 . . . . . . 7  |-  ( A  e.  RR  ->  (
( B  e.  QQ  /\  B  =/=  0 )  ->  ( -.  A  e.  QQ  ->  -.  ( A  x.  B )  e.  QQ ) ) )
2827com23 78 . . . . . 6  |-  ( A  e.  RR  ->  ( -.  A  e.  QQ  ->  ( ( B  e.  QQ  /\  B  =/=  0 )  ->  -.  ( A  x.  B
)  e.  QQ ) ) )
2928imp31 256 . . . . 5  |-  ( ( ( A  e.  RR  /\ 
-.  A  e.  QQ )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  -.  ( A  x.  B
)  e.  QQ )
305, 29jca 306 . . . 4  |-  ( ( ( A  e.  RR  /\ 
-.  A  e.  QQ )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( ( A  x.  B )  e.  RR  /\ 
-.  ( A  x.  B )  e.  QQ ) )
31303impb 1201 . . 3  |-  ( ( ( A  e.  RR  /\ 
-.  A  e.  QQ )  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( ( A  x.  B )  e.  RR  /\  -.  ( A  x.  B )  e.  QQ ) )
321, 31syl3an1b 1285 . 2  |-  ( ( A  e.  ( RR 
\  QQ )  /\  B  e.  QQ  /\  B  =/=  0 )  ->  (
( A  x.  B
)  e.  RR  /\  -.  ( A  x.  B
)  e.  QQ ) )
33 eldif 3174 . 2  |-  ( ( A  x.  B )  e.  ( RR  \  QQ )  <->  ( ( A  x.  B )  e.  RR  /\  -.  ( A  x.  B )  e.  QQ ) )
3432, 33sylibr 134 1  |-  ( ( A  e.  ( RR 
\  QQ )  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  x.  B )  e.  ( RR  \  QQ ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1372    e. wcel 2175    =/= wne 2375    \ cdif 3162   class class class wbr 4043  (class class class)co 5943   CCcc 7922   RRcr 7923   0cc0 7924    x. cmul 7929   # cap 8653    / cdiv 8744   ZZcz 9371   QQcq 9739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-po 4342  df-iso 4343  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-n0 9295  df-z 9372  df-q 9740
This theorem is referenced by:  2logb9irrALT  15417
  Copyright terms: Public domain W3C validator