ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  irrmul Unicode version

Theorem irrmul 9768
Description: The product of a real which is not rational with a nonzero rational is not rational. Note that by "not rational" we mean the negation of "is rational" (whereas "irrational" is often defined to mean apart from any rational number - given excluded middle these two definitions would be equivalent). For a similar theorem with irrational in place of not rational, see irrmulap 9769. (Contributed by NM, 7-Nov-2008.)
Assertion
Ref Expression
irrmul  |-  ( ( A  e.  ( RR 
\  QQ )  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  x.  B )  e.  ( RR  \  QQ ) )

Proof of Theorem irrmul
StepHypRef Expression
1 eldif 3175 . . 3  |-  ( A  e.  ( RR  \  QQ )  <->  ( A  e.  RR  /\  -.  A  e.  QQ ) )
2 qre 9746 . . . . . . 7  |-  ( B  e.  QQ  ->  B  e.  RR )
3 remulcl 8053 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
42, 3sylan2 286 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  QQ )  ->  ( A  x.  B
)  e.  RR )
54ad2ant2r 509 . . . . 5  |-  ( ( ( A  e.  RR  /\ 
-.  A  e.  QQ )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( A  x.  B
)  e.  RR )
6 qdivcl 9764 . . . . . . . . . . . . 13  |-  ( ( ( A  x.  B
)  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  (
( A  x.  B
)  /  B )  e.  QQ )
763expb 1207 . . . . . . . . . . . 12  |-  ( ( ( A  x.  B
)  e.  QQ  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  ( ( A  x.  B )  /  B )  e.  QQ )
87expcom 116 . . . . . . . . . . 11  |-  ( ( B  e.  QQ  /\  B  =/=  0 )  -> 
( ( A  x.  B )  e.  QQ  ->  ( ( A  x.  B )  /  B
)  e.  QQ ) )
98adantl 277 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  ( ( A  x.  B )  e.  QQ  ->  ( ( A  x.  B )  /  B )  e.  QQ ) )
10 recn 8058 . . . . . . . . . . . . . 14  |-  ( A  e.  RR  ->  A  e.  CC )
11103ad2ant1 1021 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  QQ  /\  B  =/=  0 )  ->  A  e.  CC )
12 qcn 9755 . . . . . . . . . . . . . 14  |-  ( B  e.  QQ  ->  B  e.  CC )
13123ad2ant2 1022 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  QQ  /\  B  =/=  0 )  ->  B  e.  CC )
14 simp3 1002 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  QQ  /\  B  =/=  0 )  ->  B  =/=  0 )
15 0z 9383 . . . . . . . . . . . . . . . . 17  |-  0  e.  ZZ
16 zq 9747 . . . . . . . . . . . . . . . . 17  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
1715, 16ax-mp 5 . . . . . . . . . . . . . . . 16  |-  0  e.  QQ
18 qapne 9760 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  QQ  /\  0  e.  QQ )  ->  ( B #  0  <->  B  =/=  0 ) )
1917, 18mpan2 425 . . . . . . . . . . . . . . 15  |-  ( B  e.  QQ  ->  ( B #  0  <->  B  =/=  0
) )
20193ad2ant2 1022 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( B #  0  <->  B  =/=  0
) )
2114, 20mpbird 167 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  QQ  /\  B  =/=  0 )  ->  B #  0 )
2211, 13, 21divcanap4d 8869 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  QQ  /\  B  =/=  0 )  ->  (
( A  x.  B
)  /  B )  =  A )
23223expb 1207 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  ( ( A  x.  B )  /  B )  =  A )
2423eleq1d 2274 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  ( (
( A  x.  B
)  /  B )  e.  QQ  <->  A  e.  QQ ) )
259, 24sylibd 149 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  ( ( A  x.  B )  e.  QQ  ->  A  e.  QQ ) )
2625con3d 632 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  ( -.  A  e.  QQ  ->  -.  ( A  x.  B
)  e.  QQ ) )
2726ex 115 . . . . . . 7  |-  ( A  e.  RR  ->  (
( B  e.  QQ  /\  B  =/=  0 )  ->  ( -.  A  e.  QQ  ->  -.  ( A  x.  B )  e.  QQ ) ) )
2827com23 78 . . . . . 6  |-  ( A  e.  RR  ->  ( -.  A  e.  QQ  ->  ( ( B  e.  QQ  /\  B  =/=  0 )  ->  -.  ( A  x.  B
)  e.  QQ ) ) )
2928imp31 256 . . . . 5  |-  ( ( ( A  e.  RR  /\ 
-.  A  e.  QQ )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  -.  ( A  x.  B
)  e.  QQ )
305, 29jca 306 . . . 4  |-  ( ( ( A  e.  RR  /\ 
-.  A  e.  QQ )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( ( A  x.  B )  e.  RR  /\ 
-.  ( A  x.  B )  e.  QQ ) )
31303impb 1202 . . 3  |-  ( ( ( A  e.  RR  /\ 
-.  A  e.  QQ )  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( ( A  x.  B )  e.  RR  /\  -.  ( A  x.  B )  e.  QQ ) )
321, 31syl3an1b 1286 . 2  |-  ( ( A  e.  ( RR 
\  QQ )  /\  B  e.  QQ  /\  B  =/=  0 )  ->  (
( A  x.  B
)  e.  RR  /\  -.  ( A  x.  B
)  e.  QQ ) )
33 eldif 3175 . 2  |-  ( ( A  x.  B )  e.  ( RR  \  QQ )  <->  ( ( A  x.  B )  e.  RR  /\  -.  ( A  x.  B )  e.  QQ ) )
3432, 33sylibr 134 1  |-  ( ( A  e.  ( RR 
\  QQ )  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  x.  B )  e.  ( RR  \  QQ ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176    =/= wne 2376    \ cdif 3163   class class class wbr 4044  (class class class)co 5944   CCcc 7923   RRcr 7924   0cc0 7925    x. cmul 7930   # cap 8654    / cdiv 8745   ZZcz 9372   QQcq 9740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-n0 9296  df-z 9373  df-q 9741
This theorem is referenced by:  2logb9irrALT  15446
  Copyright terms: Public domain W3C validator