Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > irrmul | Unicode version |
Description: The product of a real which is not rational with a nonzero rational is not rational. Note that by "not rational" we mean the negation of "is rational" (whereas "irrational" is often defined to mean apart from any rational number - given excluded middle these two definitions would be equivalent). (Contributed by NM, 7-Nov-2008.) |
Ref | Expression |
---|---|
irrmul |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3125 | . . 3 | |
2 | qre 9563 | . . . . . . 7 | |
3 | remulcl 7881 | . . . . . . 7 | |
4 | 2, 3 | sylan2 284 | . . . . . 6 |
5 | 4 | ad2ant2r 501 | . . . . 5 |
6 | qdivcl 9581 | . . . . . . . . . . . . 13 | |
7 | 6 | 3expb 1194 | . . . . . . . . . . . 12 |
8 | 7 | expcom 115 | . . . . . . . . . . 11 |
9 | 8 | adantl 275 | . . . . . . . . . 10 |
10 | recn 7886 | . . . . . . . . . . . . . 14 | |
11 | 10 | 3ad2ant1 1008 | . . . . . . . . . . . . 13 |
12 | qcn 9572 | . . . . . . . . . . . . . 14 | |
13 | 12 | 3ad2ant2 1009 | . . . . . . . . . . . . 13 |
14 | simp3 989 | . . . . . . . . . . . . . 14 | |
15 | 0z 9202 | . . . . . . . . . . . . . . . . 17 | |
16 | zq 9564 | . . . . . . . . . . . . . . . . 17 | |
17 | 15, 16 | ax-mp 5 | . . . . . . . . . . . . . . . 16 |
18 | qapne 9577 | . . . . . . . . . . . . . . . 16 # | |
19 | 17, 18 | mpan2 422 | . . . . . . . . . . . . . . 15 # |
20 | 19 | 3ad2ant2 1009 | . . . . . . . . . . . . . 14 # |
21 | 14, 20 | mpbird 166 | . . . . . . . . . . . . 13 # |
22 | 11, 13, 21 | divcanap4d 8692 | . . . . . . . . . . . 12 |
23 | 22 | 3expb 1194 | . . . . . . . . . . 11 |
24 | 23 | eleq1d 2235 | . . . . . . . . . 10 |
25 | 9, 24 | sylibd 148 | . . . . . . . . 9 |
26 | 25 | con3d 621 | . . . . . . . 8 |
27 | 26 | ex 114 | . . . . . . 7 |
28 | 27 | com23 78 | . . . . . 6 |
29 | 28 | imp31 254 | . . . . 5 |
30 | 5, 29 | jca 304 | . . . 4 |
31 | 30 | 3impb 1189 | . . 3 |
32 | 1, 31 | syl3an1b 1264 | . 2 |
33 | eldif 3125 | . 2 | |
34 | 32, 33 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 wne 2336 cdif 3113 class class class wbr 3982 (class class class)co 5842 cc 7751 cr 7752 cc0 7753 cmul 7758 # cap 8479 cdiv 8568 cz 9191 cq 9557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-n0 9115 df-z 9192 df-q 9558 |
This theorem is referenced by: 2logb9irrALT 13532 |
Copyright terms: Public domain | W3C validator |