ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nzadd Unicode version

Theorem nzadd 9307
Description: The sum of a real number not being an integer and an integer is not an integer. Note that "not being an integer" in this case means "the negation of is an integer" rather than "is apart from any integer" (given excluded middle, those two would be equivalent). (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
nzadd  |-  ( ( A  e.  ( RR 
\  ZZ )  /\  B  e.  ZZ )  ->  ( A  +  B
)  e.  ( RR 
\  ZZ ) )

Proof of Theorem nzadd
StepHypRef Expression
1 eldif 3140 . . 3  |-  ( A  e.  ( RR  \  ZZ )  <->  ( A  e.  RR  /\  -.  A  e.  ZZ ) )
2 zre 9259 . . . . . 6  |-  ( B  e.  ZZ  ->  B  e.  RR )
3 readdcl 7939 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
42, 3sylan2 286 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  ZZ )  ->  ( A  +  B
)  e.  RR )
54adantlr 477 . . . 4  |-  ( ( ( A  e.  RR  /\ 
-.  A  e.  ZZ )  /\  B  e.  ZZ )  ->  ( A  +  B )  e.  RR )
6 zsubcl 9296 . . . . . . . . . . 11  |-  ( ( ( A  +  B
)  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  +  B )  -  B
)  e.  ZZ )
76expcom 116 . . . . . . . . . 10  |-  ( B  e.  ZZ  ->  (
( A  +  B
)  e.  ZZ  ->  ( ( A  +  B
)  -  B )  e.  ZZ ) )
87adantl 277 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  ZZ )  ->  ( ( A  +  B )  e.  ZZ  ->  ( ( A  +  B )  -  B
)  e.  ZZ ) )
9 recn 7946 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  A  e.  CC )
10 zcn 9260 . . . . . . . . . . 11  |-  ( B  e.  ZZ  ->  B  e.  CC )
11 pncan 8165 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  -  B
)  =  A )
129, 10, 11syl2an 289 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  ZZ )  ->  ( ( A  +  B )  -  B
)  =  A )
1312eleq1d 2246 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  ZZ )  ->  ( ( ( A  +  B )  -  B )  e.  ZZ  <->  A  e.  ZZ ) )
148, 13sylibd 149 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  ZZ )  ->  ( ( A  +  B )  e.  ZZ  ->  A  e.  ZZ ) )
1514con3d 631 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  ZZ )  ->  ( -.  A  e.  ZZ  ->  -.  ( A  +  B )  e.  ZZ ) )
1615ex 115 . . . . . 6  |-  ( A  e.  RR  ->  ( B  e.  ZZ  ->  ( -.  A  e.  ZZ  ->  -.  ( A  +  B )  e.  ZZ ) ) )
1716com23 78 . . . . 5  |-  ( A  e.  RR  ->  ( -.  A  e.  ZZ  ->  ( B  e.  ZZ  ->  -.  ( A  +  B )  e.  ZZ ) ) )
1817imp31 256 . . . 4  |-  ( ( ( A  e.  RR  /\ 
-.  A  e.  ZZ )  /\  B  e.  ZZ )  ->  -.  ( A  +  B )  e.  ZZ )
195, 18jca 306 . . 3  |-  ( ( ( A  e.  RR  /\ 
-.  A  e.  ZZ )  /\  B  e.  ZZ )  ->  ( ( A  +  B )  e.  RR  /\  -.  ( A  +  B )  e.  ZZ ) )
201, 19sylanb 284 . 2  |-  ( ( A  e.  ( RR 
\  ZZ )  /\  B  e.  ZZ )  ->  ( ( A  +  B )  e.  RR  /\ 
-.  ( A  +  B )  e.  ZZ ) )
21 eldif 3140 . 2  |-  ( ( A  +  B )  e.  ( RR  \  ZZ )  <->  ( ( A  +  B )  e.  RR  /\  -.  ( A  +  B )  e.  ZZ ) )
2220, 21sylibr 134 1  |-  ( ( A  e.  ( RR 
\  ZZ )  /\  B  e.  ZZ )  ->  ( A  +  B
)  e.  ( RR 
\  ZZ ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148    \ cdif 3128  (class class class)co 5877   CCcc 7811   RRcr 7812    + caddc 7816    - cmin 8130   ZZcz 9255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator