ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nzadd Unicode version

Theorem nzadd 9213
Description: The sum of a real number not being an integer and an integer is not an integer. Note that "not being an integer" in this case means "the negation of is an integer" rather than "is apart from any integer" (given excluded middle, those two would be equivalent). (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
nzadd  |-  ( ( A  e.  ( RR 
\  ZZ )  /\  B  e.  ZZ )  ->  ( A  +  B
)  e.  ( RR 
\  ZZ ) )

Proof of Theorem nzadd
StepHypRef Expression
1 eldif 3111 . . 3  |-  ( A  e.  ( RR  \  ZZ )  <->  ( A  e.  RR  /\  -.  A  e.  ZZ ) )
2 zre 9165 . . . . . 6  |-  ( B  e.  ZZ  ->  B  e.  RR )
3 readdcl 7852 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
42, 3sylan2 284 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  ZZ )  ->  ( A  +  B
)  e.  RR )
54adantlr 469 . . . 4  |-  ( ( ( A  e.  RR  /\ 
-.  A  e.  ZZ )  /\  B  e.  ZZ )  ->  ( A  +  B )  e.  RR )
6 zsubcl 9202 . . . . . . . . . . 11  |-  ( ( ( A  +  B
)  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  +  B )  -  B
)  e.  ZZ )
76expcom 115 . . . . . . . . . 10  |-  ( B  e.  ZZ  ->  (
( A  +  B
)  e.  ZZ  ->  ( ( A  +  B
)  -  B )  e.  ZZ ) )
87adantl 275 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  ZZ )  ->  ( ( A  +  B )  e.  ZZ  ->  ( ( A  +  B )  -  B
)  e.  ZZ ) )
9 recn 7859 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  A  e.  CC )
10 zcn 9166 . . . . . . . . . . 11  |-  ( B  e.  ZZ  ->  B  e.  CC )
11 pncan 8075 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  -  B
)  =  A )
129, 10, 11syl2an 287 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  ZZ )  ->  ( ( A  +  B )  -  B
)  =  A )
1312eleq1d 2226 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  ZZ )  ->  ( ( ( A  +  B )  -  B )  e.  ZZ  <->  A  e.  ZZ ) )
148, 13sylibd 148 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  ZZ )  ->  ( ( A  +  B )  e.  ZZ  ->  A  e.  ZZ ) )
1514con3d 621 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  ZZ )  ->  ( -.  A  e.  ZZ  ->  -.  ( A  +  B )  e.  ZZ ) )
1615ex 114 . . . . . 6  |-  ( A  e.  RR  ->  ( B  e.  ZZ  ->  ( -.  A  e.  ZZ  ->  -.  ( A  +  B )  e.  ZZ ) ) )
1716com23 78 . . . . 5  |-  ( A  e.  RR  ->  ( -.  A  e.  ZZ  ->  ( B  e.  ZZ  ->  -.  ( A  +  B )  e.  ZZ ) ) )
1817imp31 254 . . . 4  |-  ( ( ( A  e.  RR  /\ 
-.  A  e.  ZZ )  /\  B  e.  ZZ )  ->  -.  ( A  +  B )  e.  ZZ )
195, 18jca 304 . . 3  |-  ( ( ( A  e.  RR  /\ 
-.  A  e.  ZZ )  /\  B  e.  ZZ )  ->  ( ( A  +  B )  e.  RR  /\  -.  ( A  +  B )  e.  ZZ ) )
201, 19sylanb 282 . 2  |-  ( ( A  e.  ( RR 
\  ZZ )  /\  B  e.  ZZ )  ->  ( ( A  +  B )  e.  RR  /\ 
-.  ( A  +  B )  e.  ZZ ) )
21 eldif 3111 . 2  |-  ( ( A  +  B )  e.  ( RR  \  ZZ )  <->  ( ( A  +  B )  e.  RR  /\  -.  ( A  +  B )  e.  ZZ ) )
2220, 21sylibr 133 1  |-  ( ( A  e.  ( RR 
\  ZZ )  /\  B  e.  ZZ )  ->  ( A  +  B
)  e.  ( RR 
\  ZZ ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128    \ cdif 3099  (class class class)co 5821   CCcc 7724   RRcr 7725    + caddc 7729    - cmin 8040   ZZcz 9161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-addcom 7826  ax-addass 7828  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-0id 7834  ax-rnegex 7835  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-ltadd 7842
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-iota 5134  df-fun 5171  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-inn 8828  df-n0 9085  df-z 9162
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator