ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcanpig Unicode version

Theorem mulcanpig 6892
Description: Multiplication cancellation law for positive integers. (Contributed by Jim Kingdon, 29-Aug-2019.)
Assertion
Ref Expression
mulcanpig  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  .N  B
)  =  ( A  .N  C )  <->  B  =  C ) )

Proof of Theorem mulcanpig
StepHypRef Expression
1 mulpiord 6874 . . . . . 6  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  =  ( A  .o  B ) )
21adantr 270 . . . . 5  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( A  .N  B )  =  ( A  .o  B ) )
3 mulpiord 6874 . . . . . 6  |-  ( ( A  e.  N.  /\  C  e.  N. )  ->  ( A  .N  C
)  =  ( A  .o  C ) )
43adantlr 461 . . . . 5  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( A  .N  C )  =  ( A  .o  C ) )
52, 4eqeq12d 2102 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  .N  B )  =  ( A  .N  C
)  <->  ( A  .o  B )  =  ( A  .o  C ) ) )
6 pinn 6866 . . . . . . . . 9  |-  ( A  e.  N.  ->  A  e.  om )
7 pinn 6866 . . . . . . . . 9  |-  ( B  e.  N.  ->  B  e.  om )
8 pinn 6866 . . . . . . . . 9  |-  ( C  e.  N.  ->  C  e.  om )
9 elni2 6871 . . . . . . . . . . . 12  |-  ( A  e.  N.  <->  ( A  e.  om  /\  (/)  e.  A
) )
109simprbi 269 . . . . . . . . . . 11  |-  ( A  e.  N.  ->  (/)  e.  A
)
11 nnmcan 6276 . . . . . . . . . . . 12  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  A )  ->  ( ( A  .o  B )  =  ( A  .o  C
)  <->  B  =  C
) )
1211biimpd 142 . . . . . . . . . . 11  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  A )  ->  ( ( A  .o  B )  =  ( A  .o  C
)  ->  B  =  C ) )
1310, 12sylan2 280 . . . . . . . . . 10  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  A  e.  N. )  ->  ( ( A  .o  B )  =  ( A  .o  C
)  ->  B  =  C ) )
1413ex 113 . . . . . . . . 9  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  e.  N.  ->  ( ( A  .o  B
)  =  ( A  .o  C )  ->  B  =  C )
) )
156, 7, 8, 14syl3an 1216 . . . . . . . 8  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  e.  N.  ->  ( ( A  .o  B
)  =  ( A  .o  C )  ->  B  =  C )
) )
16153exp 1142 . . . . . . 7  |-  ( A  e.  N.  ->  ( B  e.  N.  ->  ( C  e.  N.  ->  ( A  e.  N.  ->  ( ( A  .o  B
)  =  ( A  .o  C )  ->  B  =  C )
) ) ) )
1716com4r 85 . . . . . 6  |-  ( A  e.  N.  ->  ( A  e.  N.  ->  ( B  e.  N.  ->  ( C  e.  N.  ->  ( ( A  .o  B
)  =  ( A  .o  C )  ->  B  =  C )
) ) ) )
1817pm2.43i 48 . . . . 5  |-  ( A  e.  N.  ->  ( B  e.  N.  ->  ( C  e.  N.  ->  ( ( A  .o  B
)  =  ( A  .o  C )  ->  B  =  C )
) ) )
1918imp31 252 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  .o  B )  =  ( A  .o  C
)  ->  B  =  C ) )
205, 19sylbid 148 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  .N  B )  =  ( A  .N  C
)  ->  B  =  C ) )
21203impa 1138 . 2  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  .N  B
)  =  ( A  .N  C )  ->  B  =  C )
)
22 oveq2 5660 . 2  |-  ( B  =  C  ->  ( A  .N  B )  =  ( A  .N  C
) )
2321, 22impbid1 140 1  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  .N  B
)  =  ( A  .N  C )  <->  B  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 924    = wceq 1289    e. wcel 1438   (/)c0 3286   omcom 4405  (class class class)co 5652    .o comu 6179   N.cnpi 6829    .N cmi 6831
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-iord 4193  df-on 4195  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-irdg 6135  df-oadd 6185  df-omul 6186  df-ni 6861  df-mi 6863
This theorem is referenced by:  enqer  6915
  Copyright terms: Public domain W3C validator