ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isausgren Unicode version

Theorem isausgren 15965
Description: The property of an ordered pair to be an alternatively defined simple graph, defined as a pair (V,E) of a set V (vertex set) and a set of unordered pairs of elements of V (edge set). (Contributed by Alexander van der Vekens, 28-Aug-2017.)
Hypothesis
Ref Expression
ausgr.1  |-  G  =  { <. v ,  e
>.  |  e  C_  { x  e.  ~P v  |  x  ~~  2o } }
Assertion
Ref Expression
isausgren  |-  ( ( V  e.  W  /\  E  e.  X )  ->  ( V G E  <-> 
E  C_  { x  e.  ~P V  |  x 
~~  2o } ) )
Distinct variable groups:    v, e, x, E    e, V, v, x    x, X
Allowed substitution hints:    G( x, v, e)    W( x, v, e)    X( v, e)

Proof of Theorem isausgren
StepHypRef Expression
1 simpr 110 . . 3  |-  ( ( v  =  V  /\  e  =  E )  ->  e  =  E )
2 pweq 3652 . . . . 5  |-  ( v  =  V  ->  ~P v  =  ~P V
)
32adantr 276 . . . 4  |-  ( ( v  =  V  /\  e  =  E )  ->  ~P v  =  ~P V )
43rabeqdv 2793 . . 3  |-  ( ( v  =  V  /\  e  =  E )  ->  { x  e.  ~P v  |  x  ~~  2o }  =  { x  e.  ~P V  |  x 
~~  2o } )
51, 4sseq12d 3255 . 2  |-  ( ( v  =  V  /\  e  =  E )  ->  ( e  C_  { x  e.  ~P v  |  x 
~~  2o }  <->  E  C_  { x  e.  ~P V  |  x 
~~  2o } ) )
6 ausgr.1 . 2  |-  G  =  { <. v ,  e
>.  |  e  C_  { x  e.  ~P v  |  x  ~~  2o } }
75, 6brabga 4352 1  |-  ( ( V  e.  W  /\  E  e.  X )  ->  ( V G E  <-> 
E  C_  { x  e.  ~P V  |  x 
~~  2o } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   {crab 2512    C_ wss 3197   ~Pcpw 3649   class class class wbr 4083   {copab 4144   2oc2o 6556    ~~ cen 6885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146
This theorem is referenced by:  ausgrusgrben  15966  usgrausgrien  15967  ausgrumgrien  15968  ausgrusgrien  15969
  Copyright terms: Public domain W3C validator