ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ausgrumgrien Unicode version

Theorem ausgrumgrien 15925
Description: If an alternatively defined simple graph has the vertices and edges of an arbitrary graph, the arbitrary graph is an undirected multigraph. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 25-Nov-2020.)
Hypothesis
Ref Expression
ausgr.1  |-  G  =  { <. v ,  e
>.  |  e  C_  { x  e.  ~P v  |  x  ~~  2o } }
Assertion
Ref Expression
ausgrumgrien  |-  ( ( H  e.  W  /\  (Vtx `  H ) G (Edg `  H )  /\  Fun  (iEdg `  H
) )  ->  H  e. UMGraph )
Distinct variable group:    v, e, x, H
Allowed substitution hints:    G( x, v, e)    W( x, v, e)

Proof of Theorem ausgrumgrien
StepHypRef Expression
1 vtxex 15778 . . . . 5  |-  ( H  e.  W  ->  (Vtx `  H )  e.  _V )
2 edgvalg 15817 . . . . . 6  |-  ( H  e.  W  ->  (Edg `  H )  =  ran  (iEdg `  H ) )
3 iedgex 15779 . . . . . . 7  |-  ( H  e.  W  ->  (iEdg `  H )  e.  _V )
4 rnexg 4963 . . . . . . 7  |-  ( (iEdg `  H )  e.  _V  ->  ran  (iEdg `  H
)  e.  _V )
53, 4syl 14 . . . . . 6  |-  ( H  e.  W  ->  ran  (iEdg `  H )  e. 
_V )
62, 5eqeltrd 2284 . . . . 5  |-  ( H  e.  W  ->  (Edg `  H )  e.  _V )
7 ausgr.1 . . . . . 6  |-  G  =  { <. v ,  e
>.  |  e  C_  { x  e.  ~P v  |  x  ~~  2o } }
87isausgren 15922 . . . . 5  |-  ( ( (Vtx `  H )  e.  _V  /\  (Edg `  H )  e.  _V )  ->  ( (Vtx `  H ) G (Edg
`  H )  <->  (Edg `  H
)  C_  { x  e.  ~P (Vtx `  H
)  |  x  ~~  2o } ) )
91, 6, 8syl2anc 411 . . . 4  |-  ( H  e.  W  ->  (
(Vtx `  H ) G (Edg `  H )  <->  (Edg
`  H )  C_  { x  e.  ~P (Vtx `  H )  |  x 
~~  2o } ) )
102sseq1d 3231 . . . . 5  |-  ( H  e.  W  ->  (
(Edg `  H )  C_ 
{ x  e.  ~P (Vtx `  H )  |  x  ~~  2o }  <->  ran  (iEdg `  H )  C_ 
{ x  e.  ~P (Vtx `  H )  |  x  ~~  2o }
) )
11 funfn 5321 . . . . . . . . 9  |-  ( Fun  (iEdg `  H )  <->  (iEdg `  H )  Fn  dom  (iEdg `  H ) )
1211biimpi 120 . . . . . . . 8  |-  ( Fun  (iEdg `  H )  ->  (iEdg `  H )  Fn  dom  (iEdg `  H
) )
13123ad2ant3 1023 . . . . . . 7  |-  ( ( H  e.  W  /\  ran  (iEdg `  H )  C_ 
{ x  e.  ~P (Vtx `  H )  |  x  ~~  2o }  /\  Fun  (iEdg `  H
) )  ->  (iEdg `  H )  Fn  dom  (iEdg `  H ) )
14 simp2 1001 . . . . . . 7  |-  ( ( H  e.  W  /\  ran  (iEdg `  H )  C_ 
{ x  e.  ~P (Vtx `  H )  |  x  ~~  2o }  /\  Fun  (iEdg `  H
) )  ->  ran  (iEdg `  H )  C_  { x  e.  ~P (Vtx `  H )  |  x 
~~  2o } )
15 df-f 5295 . . . . . . 7  |-  ( (iEdg `  H ) : dom  (iEdg `  H ) --> { x  e.  ~P (Vtx `  H )  |  x 
~~  2o }  <->  ( (iEdg `  H )  Fn  dom  (iEdg `  H )  /\  ran  (iEdg `  H )  C_ 
{ x  e.  ~P (Vtx `  H )  |  x  ~~  2o }
) )
1613, 14, 15sylanbrc 417 . . . . . 6  |-  ( ( H  e.  W  /\  ran  (iEdg `  H )  C_ 
{ x  e.  ~P (Vtx `  H )  |  x  ~~  2o }  /\  Fun  (iEdg `  H
) )  ->  (iEdg `  H ) : dom  (iEdg `  H ) --> { x  e.  ~P (Vtx `  H )  |  x 
~~  2o } )
17163exp 1205 . . . . 5  |-  ( H  e.  W  ->  ( ran  (iEdg `  H )  C_ 
{ x  e.  ~P (Vtx `  H )  |  x  ~~  2o }  ->  ( Fun  (iEdg `  H )  ->  (iEdg `  H ) : dom  (iEdg `  H ) --> { x  e.  ~P (Vtx `  H )  |  x 
~~  2o } ) ) )
1810, 17sylbid 150 . . . 4  |-  ( H  e.  W  ->  (
(Edg `  H )  C_ 
{ x  e.  ~P (Vtx `  H )  |  x  ~~  2o }  ->  ( Fun  (iEdg `  H )  ->  (iEdg `  H ) : dom  (iEdg `  H ) --> { x  e.  ~P (Vtx `  H )  |  x 
~~  2o } ) ) )
199, 18sylbid 150 . . 3  |-  ( H  e.  W  ->  (
(Vtx `  H ) G (Edg `  H )  ->  ( Fun  (iEdg `  H )  ->  (iEdg `  H ) : dom  (iEdg `  H ) --> { x  e.  ~P (Vtx `  H )  |  x 
~~  2o } ) ) )
20193imp 1196 . 2  |-  ( ( H  e.  W  /\  (Vtx `  H ) G (Edg `  H )  /\  Fun  (iEdg `  H
) )  ->  (iEdg `  H ) : dom  (iEdg `  H ) --> { x  e.  ~P (Vtx `  H )  |  x 
~~  2o } )
21 eqid 2207 . . . 4  |-  (Vtx `  H )  =  (Vtx
`  H )
22 eqid 2207 . . . 4  |-  (iEdg `  H )  =  (iEdg `  H )
2321, 22isumgren 15862 . . 3  |-  ( H  e.  W  ->  ( H  e. UMGraph  <->  (iEdg `  H ) : dom  (iEdg `  H
) --> { x  e. 
~P (Vtx `  H
)  |  x  ~~  2o } ) )
24233ad2ant1 1021 . 2  |-  ( ( H  e.  W  /\  (Vtx `  H ) G (Edg `  H )  /\  Fun  (iEdg `  H
) )  ->  ( H  e. UMGraph  <->  (iEdg `  H ) : dom  (iEdg `  H
) --> { x  e. 
~P (Vtx `  H
)  |  x  ~~  2o } ) )
2520, 24mpbird 167 1  |-  ( ( H  e.  W  /\  (Vtx `  H ) G (Edg `  H )  /\  Fun  (iEdg `  H
) )  ->  H  e. UMGraph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   {crab 2490   _Vcvv 2777    C_ wss 3175   ~Pcpw 3627   class class class wbr 4060   {copab 4121   dom cdm 4694   ran crn 4695   Fun wfun 5285    Fn wfn 5286   -->wf 5287   ` cfv 5291   2oc2o 6521    ~~ cen 6850  Vtxcvtx 15772  iEdgciedg 15773  Edgcedg 15815  UMGraphcumgr 15849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4179  ax-pow 4235  ax-pr 4270  ax-un 4499  ax-setind 4604  ax-cnex 8053  ax-resscn 8054  ax-1cn 8055  ax-1re 8056  ax-icn 8057  ax-addcl 8058  ax-addrcl 8059  ax-mulcl 8060  ax-addcom 8062  ax-mulcom 8063  ax-addass 8064  ax-mulass 8065  ax-distr 8066  ax-i2m1 8067  ax-1rid 8069  ax-0id 8070  ax-rnegex 8071  ax-cnre 8073
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2779  df-sbc 3007  df-csb 3103  df-dif 3177  df-un 3179  df-in 3181  df-ss 3188  df-if 3581  df-pw 3629  df-sn 3650  df-pr 3651  df-op 3653  df-uni 3866  df-int 3901  df-br 4061  df-opab 4123  df-mpt 4124  df-id 4359  df-xp 4700  df-rel 4701  df-cnv 4702  df-co 4703  df-dm 4704  df-rn 4705  df-res 4706  df-iota 5252  df-fun 5293  df-fn 5294  df-f 5295  df-fo 5297  df-fv 5299  df-riota 5924  df-ov 5972  df-oprab 5973  df-mpo 5974  df-1st 6251  df-2nd 6252  df-sub 8282  df-inn 9074  df-2 9132  df-3 9133  df-4 9134  df-5 9135  df-6 9136  df-7 9137  df-8 9138  df-9 9139  df-n0 9333  df-dec 9542  df-ndx 12996  df-slot 12997  df-base 12999  df-edgf 15765  df-vtx 15774  df-iedg 15775  df-edg 15816  df-umgren 15851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator