ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ausgrusgrben Unicode version

Theorem ausgrusgrben 15966
Description: The equivalence of the definitions of a simple graph. (Contributed by Alexander van der Vekens, 28-Aug-2017.) (Revised by AV, 14-Oct-2020.)
Hypothesis
Ref Expression
ausgr.1  |-  G  =  { <. v ,  e
>.  |  e  C_  { x  e.  ~P v  |  x  ~~  2o } }
Assertion
Ref Expression
ausgrusgrben  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  ( V G E  <->  <. V ,  (  _I  |`  E ) >.  e. USGraph )
)
Distinct variable groups:    v, e, x, E    e, V, v, x    x, X    x, Y
Allowed substitution hints:    G( x, v, e)    X( v, e)    Y( v, e)

Proof of Theorem ausgrusgrben
StepHypRef Expression
1 f1oi 5611 . . . . 5  |-  (  _I  |`  E ) : E -1-1-onto-> E
2 dff1o5 5581 . . . . . 6  |-  ( (  _I  |`  E ) : E -1-1-onto-> E  <->  ( (  _I  |`  E ) : E -1-1-> E  /\  ran  (  _I  |`  E )  =  E ) )
3 f1ss 5537 . . . . . . . . . 10  |-  ( ( (  _I  |`  E ) : E -1-1-> E  /\  E  C_  { x  e. 
~P V  |  x 
~~  2o } )  ->  (  _I  |`  E ) : E -1-1-> { x  e.  ~P V  |  x 
~~  2o } )
4 dmresi 5060 . . . . . . . . . . . 12  |-  dom  (  _I  |`  E )  =  E
54eqcomi 2233 . . . . . . . . . . 11  |-  E  =  dom  (  _I  |`  E )
6 f1eq2 5527 . . . . . . . . . . 11  |-  ( E  =  dom  (  _I  |`  E )  ->  (
(  _I  |`  E ) : E -1-1-> { x  e.  ~P V  |  x 
~~  2o }  <->  (  _I  |`  E ) : dom  (  _I  |`  E )
-1-1-> { x  e.  ~P V  |  x  ~~  2o } ) )
75, 6ax-mp 5 . . . . . . . . . 10  |-  ( (  _I  |`  E ) : E -1-1-> { x  e.  ~P V  |  x  ~~  2o }  <->  (  _I  |`  E ) : dom  (  _I  |`  E ) -1-1-> { x  e.  ~P V  |  x 
~~  2o } )
83, 7sylib 122 . . . . . . . . 9  |-  ( ( (  _I  |`  E ) : E -1-1-> E  /\  E  C_  { x  e. 
~P V  |  x 
~~  2o } )  ->  (  _I  |`  E ) : dom  (  _I  |`  E ) -1-1-> { x  e.  ~P V  |  x 
~~  2o } )
98ex 115 . . . . . . . 8  |-  ( (  _I  |`  E ) : E -1-1-> E  ->  ( E 
C_  { x  e. 
~P V  |  x 
~~  2o }  ->  (  _I  |`  E ) : dom  (  _I  |`  E )
-1-1-> { x  e.  ~P V  |  x  ~~  2o } ) )
109a1d 22 . . . . . . 7  |-  ( (  _I  |`  E ) : E -1-1-> E  ->  ( ( V  e.  X  /\  E  e.  Y )  ->  ( E  C_  { x  e.  ~P V  |  x 
~~  2o }  ->  (  _I  |`  E ) : dom  (  _I  |`  E )
-1-1-> { x  e.  ~P V  |  x  ~~  2o } ) ) )
1110adantr 276 . . . . . 6  |-  ( ( (  _I  |`  E ) : E -1-1-> E  /\  ran  (  _I  |`  E )  =  E )  -> 
( ( V  e.  X  /\  E  e.  Y )  ->  ( E  C_  { x  e. 
~P V  |  x 
~~  2o }  ->  (  _I  |`  E ) : dom  (  _I  |`  E )
-1-1-> { x  e.  ~P V  |  x  ~~  2o } ) ) )
122, 11sylbi 121 . . . . 5  |-  ( (  _I  |`  E ) : E -1-1-onto-> E  ->  ( ( V  e.  X  /\  E  e.  Y )  ->  ( E  C_  { x  e.  ~P V  |  x 
~~  2o }  ->  (  _I  |`  E ) : dom  (  _I  |`  E )
-1-1-> { x  e.  ~P V  |  x  ~~  2o } ) ) )
131, 12ax-mp 5 . . . 4  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  ( E  C_  { x  e.  ~P V  |  x 
~~  2o }  ->  (  _I  |`  E ) : dom  (  _I  |`  E )
-1-1-> { x  e.  ~P V  |  x  ~~  2o } ) )
14 df-f 5322 . . . . . 6  |-  ( (  _I  |`  E ) : dom  (  _I  |`  E ) --> { x  e.  ~P V  |  x  ~~  2o }  <->  ( (  _I  |`  E )  Fn  dom  (  _I  |`  E )  /\  ran  (  _I  |`  E )  C_  { x  e.  ~P V  |  x 
~~  2o } ) )
15 rnresi 5085 . . . . . . . . 9  |-  ran  (  _I  |`  E )  =  E
1615sseq1i 3250 . . . . . . . 8  |-  ( ran  (  _I  |`  E ) 
C_  { x  e. 
~P V  |  x 
~~  2o }  <->  E  C_  { x  e.  ~P V  |  x 
~~  2o } )
1716biimpi 120 . . . . . . 7  |-  ( ran  (  _I  |`  E ) 
C_  { x  e. 
~P V  |  x 
~~  2o }  ->  E 
C_  { x  e. 
~P V  |  x 
~~  2o } )
1817a1d 22 . . . . . 6  |-  ( ran  (  _I  |`  E ) 
C_  { x  e. 
~P V  |  x 
~~  2o }  ->  ( ( V  e.  X  /\  E  e.  Y
)  ->  E  C_  { x  e.  ~P V  |  x 
~~  2o } ) )
1914, 18simplbiim 387 . . . . 5  |-  ( (  _I  |`  E ) : dom  (  _I  |`  E ) --> { x  e.  ~P V  |  x  ~~  2o }  ->  ( ( V  e.  X  /\  E  e.  Y )  ->  E  C_  { x  e.  ~P V  |  x 
~~  2o } ) )
20 f1f 5531 . . . . 5  |-  ( (  _I  |`  E ) : dom  (  _I  |`  E )
-1-1-> { x  e.  ~P V  |  x  ~~  2o }  ->  (  _I  |`  E ) : dom  (  _I  |`  E ) --> { x  e.  ~P V  |  x  ~~  2o } )
2119, 20syl11 31 . . . 4  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  ( (  _I  |`  E ) : dom  (  _I  |`  E ) -1-1-> { x  e.  ~P V  |  x 
~~  2o }  ->  E 
C_  { x  e. 
~P V  |  x 
~~  2o } ) )
2213, 21impbid 129 . . 3  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  ( E  C_  { x  e.  ~P V  |  x 
~~  2o }  <->  (  _I  |`  E ) : dom  (  _I  |`  E )
-1-1-> { x  e.  ~P V  |  x  ~~  2o } ) )
23 resiexg 5050 . . . . 5  |-  ( E  e.  Y  ->  (  _I  |`  E )  e. 
_V )
24 opiedgfv 15826 . . . . 5  |-  ( ( V  e.  X  /\  (  _I  |`  E )  e.  _V )  -> 
(iEdg `  <. V , 
(  _I  |`  E )
>. )  =  (  _I  |`  E ) )
2523, 24sylan2 286 . . . 4  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  (iEdg `  <. V , 
(  _I  |`  E )
>. )  =  (  _I  |`  E ) )
2625dmeqd 4925 . . . 4  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  dom  (iEdg `  <. V ,  (  _I  |`  E )
>. )  =  dom  (  _I  |`  E ) )
27 opvtxfv 15823 . . . . . . 7  |-  ( ( V  e.  X  /\  (  _I  |`  E )  e.  _V )  -> 
(Vtx `  <. V , 
(  _I  |`  E )
>. )  =  V
)
2823, 27sylan2 286 . . . . . 6  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  (Vtx `  <. V , 
(  _I  |`  E )
>. )  =  V
)
2928pweqd 3654 . . . . 5  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  ~P (Vtx `  <. V ,  (  _I  |`  E )
>. )  =  ~P V )
3029rabeqdv 2793 . . . 4  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  { x  e.  ~P (Vtx `  <. V ,  (  _I  |`  E ) >. )  |  x  ~~  2o }  =  { x  e.  ~P V  |  x 
~~  2o } )
3125, 26, 30f1eq123d 5564 . . 3  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  ( (iEdg `  <. V ,  (  _I  |`  E )
>. ) : dom  (iEdg ` 
<. V ,  (  _I  |`  E ) >. ) -1-1-> { x  e.  ~P (Vtx `  <. V ,  (  _I  |`  E ) >. )  |  x  ~~  2o }  <->  (  _I  |`  E ) : dom  (  _I  |`  E ) -1-1-> { x  e.  ~P V  |  x 
~~  2o } ) )
3222, 31bitr4d 191 . 2  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  ( E  C_  { x  e.  ~P V  |  x 
~~  2o }  <->  (iEdg `  <. V ,  (  _I  |`  E )
>. ) : dom  (iEdg ` 
<. V ,  (  _I  |`  E ) >. ) -1-1-> { x  e.  ~P (Vtx `  <. V ,  (  _I  |`  E ) >. )  |  x  ~~  2o } ) )
33 ausgr.1 . . 3  |-  G  =  { <. v ,  e
>.  |  e  C_  { x  e.  ~P v  |  x  ~~  2o } }
3433isausgren 15965 . 2  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  ( V G E  <-> 
E  C_  { x  e.  ~P V  |  x 
~~  2o } ) )
35 opexg 4314 . . . 4  |-  ( ( V  e.  X  /\  (  _I  |`  E )  e.  _V )  ->  <. V ,  (  _I  |`  E ) >.  e.  _V )
3623, 35sylan2 286 . . 3  |-  ( ( V  e.  X  /\  E  e.  Y )  -> 
<. V ,  (  _I  |`  E ) >.  e.  _V )
37 eqid 2229 . . . 4  |-  (Vtx `  <. V ,  (  _I  |`  E ) >. )  =  (Vtx `  <. V , 
(  _I  |`  E )
>. )
38 eqid 2229 . . . 4  |-  (iEdg `  <. V ,  (  _I  |`  E ) >. )  =  (iEdg `  <. V , 
(  _I  |`  E )
>. )
3937, 38isusgren 15956 . . 3  |-  ( <. V ,  (  _I  |`  E ) >.  e.  _V  ->  ( <. V ,  (  _I  |`  E ) >.  e. USGraph 
<->  (iEdg `  <. V , 
(  _I  |`  E )
>. ) : dom  (iEdg ` 
<. V ,  (  _I  |`  E ) >. ) -1-1-> { x  e.  ~P (Vtx `  <. V ,  (  _I  |`  E ) >. )  |  x  ~~  2o } ) )
4036, 39syl 14 . 2  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  ( <. V ,  (  _I  |`  E ) >.  e. USGraph 
<->  (iEdg `  <. V , 
(  _I  |`  E )
>. ) : dom  (iEdg ` 
<. V ,  (  _I  |`  E ) >. ) -1-1-> { x  e.  ~P (Vtx `  <. V ,  (  _I  |`  E ) >. )  |  x  ~~  2o } ) )
4132, 34, 403bitr4d 220 1  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  ( V G E  <->  <. V ,  (  _I  |`  E ) >.  e. USGraph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   {crab 2512   _Vcvv 2799    C_ wss 3197   ~Pcpw 3649   <.cop 3669   class class class wbr 4083   {copab 4144    _I cid 4379   dom cdm 4719   ran crn 4720    |` cres 4721    Fn wfn 5313   -->wf 5314   -1-1->wf1 5315   -1-1-onto->wf1o 5317   ` cfv 5318   2oc2o 6556    ~~ cen 6885  Vtxcvtx 15813  iEdgciedg 15814  USGraphcusgr 15952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-sub 8319  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-dec 9579  df-ndx 13035  df-slot 13036  df-base 13038  df-edgf 15806  df-vtx 15815  df-iedg 15816  df-usgren 15954
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator