ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ausgrusgrien Unicode version

Theorem ausgrusgrien 15969
Description: The equivalence of the definitions of a simple graph, expressed with the set of vertices and the set of edges. (Contributed by AV, 15-Oct-2020.)
Hypotheses
Ref Expression
ausgr.1  |-  G  =  { <. v ,  e
>.  |  e  C_  { x  e.  ~P v  |  x  ~~  2o } }
ausgrusgri.1  |-  O  =  { f  |  f : dom  f -1-1-> ran  f }
Assertion
Ref Expression
ausgrusgrien  |-  ( ( H  e.  W  /\  (Vtx `  H ) G (Edg `  H )  /\  (iEdg `  H )  e.  O )  ->  H  e. USGraph )
Distinct variable groups:    v, e, x, H    f, H    x, W
Allowed substitution hints:    G( x, v, e, f)    O( x, v, e, f)    W( v, e, f)

Proof of Theorem ausgrusgrien
StepHypRef Expression
1 vtxex 15819 . . . . 5  |-  ( H  e.  W  ->  (Vtx `  H )  e.  _V )
2 edgvalg 15860 . . . . . 6  |-  ( H  e.  W  ->  (Edg `  H )  =  ran  (iEdg `  H ) )
3 iedgex 15820 . . . . . . 7  |-  ( H  e.  W  ->  (iEdg `  H )  e.  _V )
4 rnexg 4989 . . . . . . 7  |-  ( (iEdg `  H )  e.  _V  ->  ran  (iEdg `  H
)  e.  _V )
53, 4syl 14 . . . . . 6  |-  ( H  e.  W  ->  ran  (iEdg `  H )  e. 
_V )
62, 5eqeltrd 2306 . . . . 5  |-  ( H  e.  W  ->  (Edg `  H )  e.  _V )
7 ausgr.1 . . . . . 6  |-  G  =  { <. v ,  e
>.  |  e  C_  { x  e.  ~P v  |  x  ~~  2o } }
87isausgren 15965 . . . . 5  |-  ( ( (Vtx `  H )  e.  _V  /\  (Edg `  H )  e.  _V )  ->  ( (Vtx `  H ) G (Edg
`  H )  <->  (Edg `  H
)  C_  { x  e.  ~P (Vtx `  H
)  |  x  ~~  2o } ) )
91, 6, 8syl2anc 411 . . . 4  |-  ( H  e.  W  ->  (
(Vtx `  H ) G (Edg `  H )  <->  (Edg
`  H )  C_  { x  e.  ~P (Vtx `  H )  |  x 
~~  2o } ) )
102sseq1d 3253 . . . . 5  |-  ( H  e.  W  ->  (
(Edg `  H )  C_ 
{ x  e.  ~P (Vtx `  H )  |  x  ~~  2o }  <->  ran  (iEdg `  H )  C_ 
{ x  e.  ~P (Vtx `  H )  |  x  ~~  2o }
) )
11 ausgrusgri.1 . . . . . . . . . . 11  |-  O  =  { f  |  f : dom  f -1-1-> ran  f }
1211eleq2i 2296 . . . . . . . . . 10  |-  ( (iEdg `  H )  e.  O  <->  (iEdg `  H )  e.  {
f  |  f : dom  f -1-1-> ran  f } )
1312biimpi 120 . . . . . . . . 9  |-  ( (iEdg `  H )  e.  O  ->  (iEdg `  H )  e.  { f  |  f : dom  f -1-1-> ran  f } )
14 id 19 . . . . . . . . . . 11  |-  ( f  =  (iEdg `  H
)  ->  f  =  (iEdg `  H ) )
15 dmeq 4923 . . . . . . . . . . 11  |-  ( f  =  (iEdg `  H
)  ->  dom  f  =  dom  (iEdg `  H
) )
16 rneq 4951 . . . . . . . . . . 11  |-  ( f  =  (iEdg `  H
)  ->  ran  f  =  ran  (iEdg `  H
) )
1714, 15, 16f1eq123d 5564 . . . . . . . . . 10  |-  ( f  =  (iEdg `  H
)  ->  ( f : dom  f -1-1-> ran  f  <->  (iEdg `  H ) : dom  (iEdg `  H ) -1-1-> ran  (iEdg `  H ) ) )
1817elabg 2949 . . . . . . . . 9  |-  ( (iEdg `  H )  e.  O  ->  ( (iEdg `  H
)  e.  { f  |  f : dom  f -1-1-> ran  f }  <->  (iEdg `  H
) : dom  (iEdg `  H ) -1-1-> ran  (iEdg `  H ) ) )
1913, 18mpbid 147 . . . . . . . 8  |-  ( (iEdg `  H )  e.  O  ->  (iEdg `  H ) : dom  (iEdg `  H
) -1-1-> ran  (iEdg `  H
) )
20193ad2ant3 1044 . . . . . . 7  |-  ( ( H  e.  W  /\  ran  (iEdg `  H )  C_ 
{ x  e.  ~P (Vtx `  H )  |  x  ~~  2o }  /\  (iEdg `  H )  e.  O )  ->  (iEdg `  H ) : dom  (iEdg `  H ) -1-1-> ran  (iEdg `  H ) )
21 simp2 1022 . . . . . . 7  |-  ( ( H  e.  W  /\  ran  (iEdg `  H )  C_ 
{ x  e.  ~P (Vtx `  H )  |  x  ~~  2o }  /\  (iEdg `  H )  e.  O )  ->  ran  (iEdg `  H )  C_  { x  e.  ~P (Vtx `  H )  |  x 
~~  2o } )
22 f1ssr 5538 . . . . . . 7  |-  ( ( (iEdg `  H ) : dom  (iEdg `  H
) -1-1-> ran  (iEdg `  H
)  /\  ran  (iEdg `  H )  C_  { x  e.  ~P (Vtx `  H
)  |  x  ~~  2o } )  ->  (iEdg `  H ) : dom  (iEdg `  H ) -1-1-> {
x  e.  ~P (Vtx `  H )  |  x 
~~  2o } )
2320, 21, 22syl2anc 411 . . . . . 6  |-  ( ( H  e.  W  /\  ran  (iEdg `  H )  C_ 
{ x  e.  ~P (Vtx `  H )  |  x  ~~  2o }  /\  (iEdg `  H )  e.  O )  ->  (iEdg `  H ) : dom  (iEdg `  H ) -1-1-> {
x  e.  ~P (Vtx `  H )  |  x 
~~  2o } )
24233exp 1226 . . . . 5  |-  ( H  e.  W  ->  ( ran  (iEdg `  H )  C_ 
{ x  e.  ~P (Vtx `  H )  |  x  ~~  2o }  ->  ( (iEdg `  H
)  e.  O  -> 
(iEdg `  H ) : dom  (iEdg `  H
) -1-1-> { x  e.  ~P (Vtx `  H )  |  x  ~~  2o }
) ) )
2510, 24sylbid 150 . . . 4  |-  ( H  e.  W  ->  (
(Edg `  H )  C_ 
{ x  e.  ~P (Vtx `  H )  |  x  ~~  2o }  ->  ( (iEdg `  H
)  e.  O  -> 
(iEdg `  H ) : dom  (iEdg `  H
) -1-1-> { x  e.  ~P (Vtx `  H )  |  x  ~~  2o }
) ) )
269, 25sylbid 150 . . 3  |-  ( H  e.  W  ->  (
(Vtx `  H ) G (Edg `  H )  ->  ( (iEdg `  H
)  e.  O  -> 
(iEdg `  H ) : dom  (iEdg `  H
) -1-1-> { x  e.  ~P (Vtx `  H )  |  x  ~~  2o }
) ) )
27263imp 1217 . 2  |-  ( ( H  e.  W  /\  (Vtx `  H ) G (Edg `  H )  /\  (iEdg `  H )  e.  O )  ->  (iEdg `  H ) : dom  (iEdg `  H ) -1-1-> {
x  e.  ~P (Vtx `  H )  |  x 
~~  2o } )
28 eqid 2229 . . . 4  |-  (Vtx `  H )  =  (Vtx
`  H )
29 eqid 2229 . . . 4  |-  (iEdg `  H )  =  (iEdg `  H )
3028, 29isusgren 15956 . . 3  |-  ( H  e.  W  ->  ( H  e. USGraph  <->  (iEdg `  H ) : dom  (iEdg `  H
) -1-1-> { x  e.  ~P (Vtx `  H )  |  x  ~~  2o }
) )
31303ad2ant1 1042 . 2  |-  ( ( H  e.  W  /\  (Vtx `  H ) G (Edg `  H )  /\  (iEdg `  H )  e.  O )  ->  ( H  e. USGraph  <->  (iEdg `  H ) : dom  (iEdg `  H
) -1-1-> { x  e.  ~P (Vtx `  H )  |  x  ~~  2o }
) )
3227, 31mpbird 167 1  |-  ( ( H  e.  W  /\  (Vtx `  H ) G (Edg `  H )  /\  (iEdg `  H )  e.  O )  ->  H  e. USGraph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   {cab 2215   {crab 2512   _Vcvv 2799    C_ wss 3197   ~Pcpw 3649   class class class wbr 4083   {copab 4144   dom cdm 4719   ran crn 4720   -1-1->wf1 5315   ` cfv 5318   2oc2o 6556    ~~ cen 6885  Vtxcvtx 15813  iEdgciedg 15814  Edgcedg 15858  USGraphcusgr 15952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-sub 8319  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-dec 9579  df-ndx 13035  df-slot 13036  df-base 13038  df-edgf 15806  df-vtx 15815  df-iedg 15816  df-edg 15859  df-usgren 15954
This theorem is referenced by:  usgrausgrben  15970
  Copyright terms: Public domain W3C validator